soumickmj commited on
Commit
5ecfee3
1 Parent(s): 53603c3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -3
README.md CHANGED
@@ -1,3 +1,61 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: image-segmentation
6
+ tags:
7
+ - medical
8
+ - probabilistic unet
9
+ - PULASki
10
+ - vessel segmentation
11
+ - 7T MRA-ToF
12
+ - MRA
13
+ - TOF
14
+ - MRI
15
+ - 7T
16
+ - Conditional VAE
17
+ - distribution distance
18
+ ---
19
+ # PULASki_ProbUNet3D_Hausdorff_VSeg
20
+
21
+ In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification.
22
+
23
+ We proposed the PULASki as a computationally efficient generative tool for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet), which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems.
24
+
25
+ ## Model Details
26
+
27
+ ### Model Description
28
+
29
+ - **Developed by:** Dr Soumick Chatterjee
30
+ - **Model type:** PULASki 3D Probabilistic UNet, trained with Hausdorff loss
31
+ - **Task:** Probabilistic vessel segmentation in 7T MRA-ToF volumes - provides 10 segmentations for each input volume
32
+ - **Training dataset:** 7T MRA-ToF volumes, details mentioned in Sec. 4.1 of https://arxiv.org/pdf/2312.15686
33
+
34
+ ### Model Sources
35
+
36
+ <!-- Provide the basic links for the model. -->
37
+
38
+ - **Repository:** https://github.com/soumickmj/PULASki
39
+ - **Paper:** https://arxiv.org/abs/2312.15686
40
+
41
+ ## Citation
42
+
43
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
44
+
45
+ If you use this approach in your research or use codes from this repository or these weights, please cite the following in your publications:
46
+
47
+ **BibTeX:**
48
+
49
+ ```bibtex
50
+ @article{chatterjee2023pulaski,
51
+ title={PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation},
52
+ author={Chatterjee, Soumick and Gaidzik, Franziska and Sciarra, Alessandro and Mattern, Hendrik and Janiga, G{\'a}bor and Speck, Oliver and N{\"u}rnberger, Andreas and Pathiraja, Sahani},
53
+ journal={arXiv preprint arXiv:2312.15686},
54
+ year={2023}
55
+ }
56
+
57
+ ```
58
+
59
+ **APA:**
60
+
61
+ Chatterjee, S., Gaidzik, F., Sciarra, A., Mattern, H., Janiga, G., Speck, O., Nuernberger, A., & Pathiraja, S. (2023). PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation. arXiv preprint arXiv:2312.15686.