|
|
|
|
|
""" |
|
|
|
Purpose : |
|
|
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.data |
|
|
|
__author__ = "Kartik Prabhu, Mahantesh Pattadkal, and Soumick Chatterjee" |
|
__copyright__ = "Copyright 2020, Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany" |
|
__credits__ = ["Kartik Prabhu", "Mahantesh Pattadkal", "Soumick Chatterjee"] |
|
__license__ = "GPL" |
|
__version__ = "1.0.0" |
|
__maintainer__ = "Soumick Chatterjee" |
|
__email__ = "[email protected]" |
|
__status__ = "Production" |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
""" |
|
Convolution Block |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True, dropout_rate=None): |
|
super(ConvBlock, self).__init__() |
|
if bool(dropout_rate): |
|
self.conv = nn.Sequential( |
|
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size, |
|
stride=stride, padding=padding, bias=bias), |
|
nn.BatchNorm3d(num_features=out_channels), |
|
nn.LeakyReLU(inplace=True), |
|
nn.Dropout3d(p=dropout_rate), |
|
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size, |
|
stride=stride, padding=padding, bias=bias), |
|
nn.BatchNorm3d(num_features=out_channels), |
|
nn.LeakyReLU(inplace=True) |
|
) |
|
else: |
|
self.conv = nn.Sequential( |
|
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size, |
|
stride=stride, padding=padding, bias=bias), |
|
nn.BatchNorm3d(num_features=out_channels), |
|
nn.LeakyReLU(inplace=True), |
|
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size, |
|
stride=stride, padding=padding, bias=bias), |
|
nn.BatchNorm3d(num_features=out_channels), |
|
nn.LeakyReLU(inplace=True) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class UpConv(nn.Module): |
|
""" |
|
Up Convolution Block |
|
""" |
|
|
|
|
|
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True): |
|
super(UpConv, self).__init__() |
|
self.up = nn.Sequential( |
|
nn.Upsample(scale_factor=2), |
|
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size, |
|
stride=stride, padding=padding, bias=bias), |
|
nn.BatchNorm3d(num_features=out_channels), |
|
nn.LeakyReLU(inplace=True)) |
|
|
|
def forward(self, x): |
|
x = self.up(x) |
|
return x |
|
|
|
|
|
class UNet(nn.Module): |
|
""" |
|
UNet - Basic Implementation |
|
Input _ [batch * channel(# of channels of each image) * depth(# of frames) * height * width]. |
|
Paper : https://arxiv.org/abs/1505.04597 |
|
""" |
|
|
|
def __init__(self, in_ch=1, out_ch=1, init_features=64, dropout_rate=None): |
|
super(UNet, self).__init__() |
|
|
|
n1 = init_features |
|
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] |
|
|
|
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2) |
|
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2) |
|
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2) |
|
self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2) |
|
|
|
self.Conv1 = ConvBlock(in_ch, filters[0], dropout_rate=dropout_rate) |
|
self.Conv2 = ConvBlock(filters[0], filters[1], dropout_rate=dropout_rate) |
|
self.Conv3 = ConvBlock(filters[1], filters[2], dropout_rate=dropout_rate) |
|
self.Conv4 = ConvBlock(filters[2], filters[3], dropout_rate=dropout_rate) |
|
self.Conv5 = ConvBlock(filters[3], filters[4], dropout_rate=dropout_rate) |
|
|
|
self.Up5 = UpConv(filters[4], filters[3]) |
|
self.Up_conv5 = ConvBlock(filters[4], filters[3], dropout_rate=dropout_rate) |
|
|
|
self.Up4 = UpConv(filters[3], filters[2]) |
|
self.Up_conv4 = ConvBlock(filters[3], filters[2], dropout_rate=dropout_rate) |
|
|
|
self.Up3 = UpConv(filters[2], filters[1]) |
|
self.Up_conv3 = ConvBlock(filters[2], filters[1], dropout_rate=dropout_rate) |
|
|
|
self.Up2 = UpConv(filters[1], filters[0]) |
|
self.Up_conv2 = ConvBlock(filters[1], filters[0], dropout_rate=dropout_rate) |
|
|
|
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
|
|
e1 = self.Conv1(x) |
|
|
|
|
|
|
|
e2 = self.Maxpool1(e1) |
|
e2 = self.Conv2(e2) |
|
|
|
|
|
|
|
e3 = self.Maxpool2(e2) |
|
e3 = self.Conv3(e3) |
|
|
|
|
|
|
|
e4 = self.Maxpool3(e3) |
|
e4 = self.Conv4(e4) |
|
|
|
|
|
|
|
e5 = self.Maxpool4(e4) |
|
e5 = self.Conv5(e5) |
|
|
|
|
|
|
|
d5 = self.Up5(e5) |
|
|
|
|
|
|
|
|
|
d5 = torch.cat((e4, d5), dim=1) |
|
d5 = self.Up_conv5(d5) |
|
|
|
|
|
|
|
d4 = self.Up4(d5) |
|
|
|
|
|
d4 = torch.cat((e3, d4), dim=1) |
|
d4 = self.Up_conv4(d4) |
|
|
|
|
|
d3 = self.Up3(d4) |
|
d3 = torch.cat((e2, d3), dim=1) |
|
d3 = self.Up_conv3(d3) |
|
|
|
|
|
d2 = self.Up2(d3) |
|
d2 = torch.cat((e1, d2), dim=1) |
|
d2 = self.Up_conv2(d2) |
|
|
|
|
|
out = self.Conv(d2) |
|
|
|
|
|
|
|
|
|
return [out] |
|
|
|
|
|
class UNetDeepSup(nn.Module): |
|
""" |
|
UNet - Basic Implementation |
|
Input _ [batch * channel(# of channels of each image) * depth(# of frames) * height * width]. |
|
Paper : https://arxiv.org/abs/1505.04597 |
|
""" |
|
|
|
def __init__(self, in_ch=1, out_ch=1, init_features=64, dropout_rate=None): |
|
super(UNetDeepSup, self).__init__() |
|
|
|
n1 = init_features |
|
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] |
|
|
|
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2) |
|
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2) |
|
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2) |
|
self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2) |
|
|
|
self.Conv1 = ConvBlock(in_ch, filters[0], dropout_rate=dropout_rate) |
|
self.Conv2 = ConvBlock(filters[0], filters[1], dropout_rate=dropout_rate) |
|
self.Conv3 = ConvBlock(filters[1], filters[2], dropout_rate=dropout_rate) |
|
self.Conv4 = ConvBlock(filters[2], filters[3], dropout_rate=dropout_rate) |
|
self.Conv5 = ConvBlock(filters[3], filters[4], dropout_rate=dropout_rate) |
|
|
|
|
|
self.Conv_d3 = ConvBlock(filters[1], 1, dropout_rate=None) |
|
self.Conv_d4 = ConvBlock(filters[2], 1, dropout_rate=None) |
|
|
|
self.Up5 = UpConv(filters[4], filters[3]) |
|
self.Up_conv5 = ConvBlock(filters[4], filters[3], dropout_rate=dropout_rate) |
|
|
|
self.Up4 = UpConv(filters[3], filters[2]) |
|
self.Up_conv4 = ConvBlock(filters[3], filters[2], dropout_rate=dropout_rate) |
|
|
|
self.Up3 = UpConv(filters[2], filters[1]) |
|
self.Up_conv3 = ConvBlock(filters[2], filters[1], dropout_rate=dropout_rate) |
|
|
|
self.Up2 = UpConv(filters[1], filters[0]) |
|
self.Up_conv2 = ConvBlock(filters[1], filters[0], dropout_rate=dropout_rate) |
|
|
|
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0) |
|
|
|
for submodule in self.modules(): |
|
submodule.register_forward_hook(self.nan_hook) |
|
|
|
|
|
|
|
def nan_hook(self, module, inp, output): |
|
for i, out in enumerate(output): |
|
nan_mask = torch.isnan(out) |
|
if nan_mask.any(): |
|
print("In", self.__class__.__name__) |
|
torch.save(inp, '/nfs1/sutrave/outputs/nan_values_input/inp_2_Nov.pt') |
|
raise RuntimeError(" classname " + self.__class__.__name__ + "i " + str( |
|
i) + f" module: {module} classname {self.__class__.__name__} Found NAN in output {i} at indices: ", |
|
nan_mask.nonzero(), "where:", out[nan_mask.nonzero()[:, 0].unique(sorted=True)]) |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
|
|
e1 = self.Conv1(x) |
|
|
|
|
|
|
|
e2 = self.Maxpool1(e1) |
|
e2 = self.Conv2(e2) |
|
|
|
|
|
|
|
e3 = self.Maxpool2(e2) |
|
e3 = self.Conv3(e3) |
|
|
|
|
|
|
|
e4 = self.Maxpool3(e3) |
|
e4 = self.Conv4(e4) |
|
|
|
|
|
|
|
e5 = self.Maxpool4(e4) |
|
e5 = self.Conv5(e5) |
|
|
|
|
|
|
|
d5 = self.Up5(e5) |
|
|
|
|
|
|
|
|
|
d5 = torch.cat((e4, d5), dim=1) |
|
d5 = self.Up_conv5(d5) |
|
|
|
|
|
|
|
d4 = self.Up4(d5) |
|
|
|
|
|
d4 = torch.cat((e3, d4), dim=1) |
|
d4 = self.Up_conv4(d4) |
|
d4_out = self.Conv_d4(d4) |
|
|
|
|
|
|
|
d3 = self.Up3(d4) |
|
d3 = torch.cat((e2, d3), dim=1) |
|
d3 = self.Up_conv3(d3) |
|
d3_out = self.Conv_d3(d3) |
|
|
|
|
|
|
|
d2 = self.Up2(d3) |
|
d2 = torch.cat((e1, d2), dim=1) |
|
d2 = self.Up_conv2(d2) |
|
|
|
|
|
out = self.Conv(d2) |
|
|
|
|
|
|
|
|
|
return [out, d3_out, d4_out] |