File size: 924 Bytes
b580871
 
 
 
 
 
 
 
 
 
 
 
 
b6a5569
 
 
b580871
4615aaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

---
base_model: stabilityai/stable-diffusion-2-1
instance_prompt: a hand drawn painting in the style of picasso with geometric shapes
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
    
# DreamBooth trained by AutoTrain

Text encoder was not trained.  
This is the model that feeds the Google Colab Notebook.  
The model is a simplified version of the DreamBooth model.

Here is how to use the model:

import requests

API_URL = "https://api-inference.huggingface.co/models/sourceoftruthdata/sot_autotrain_dreambooth_v1"
headers = {"Authorization": "Bearer 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"}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.content
image_bytes = query({
	"inputs": "Astronaut riding a horse",
})
# You can access the image with PIL.Image for example
import io
from PIL import Image
image = Image.open(io.BytesIO(image_bytes))