Spaces:
Sleeping
Sleeping
Commit
·
9f38f01
1
Parent(s):
304e045
move spaces.GPU
Browse files
app.py
CHANGED
@@ -162,12 +162,14 @@ def pipeline_callback(output_queue: SimpleQueue, pipe: Any, step_index: int, tim
|
|
162 |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined]
|
163 |
image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined]
|
164 |
|
|
|
|
|
|
|
165 |
output_queue.put(("log", "mvs/image", rr.Image(image)))
|
166 |
output_queue.put(("log", "mvs/latents", rr.Tensor(latents.squeeze())))
|
167 |
|
168 |
return callback_kwargs
|
169 |
|
170 |
-
@spaces.GPU
|
171 |
def generate_mvs(input_image, sample_steps, sample_seed):
|
172 |
|
173 |
seed_everything(sample_seed)
|
@@ -200,7 +202,6 @@ def generate_mvs(input_image, sample_steps, sample_seed):
|
|
200 |
z123_thread.join()
|
201 |
|
202 |
|
203 |
-
@spaces.GPU
|
204 |
def make3d(images: Image.Image):
|
205 |
output_queue = SimpleQueue()
|
206 |
handle = threading.Thread(target=_make3d, args=[output_queue, images])
|
@@ -314,6 +315,8 @@ def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
314 |
|
315 |
output_queue.put(("mesh", mesh_out))
|
316 |
|
|
|
|
|
317 |
@rr.thread_local_stream("InstantMesh")
|
318 |
def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed):
|
319 |
preprocessed_image = preprocess(input_image, do_remove_background)
|
@@ -341,6 +344,10 @@ def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed):
|
|
341 |
if msg[0] == "log":
|
342 |
rr.log(msg[1], msg[2])
|
343 |
yield stream.read()
|
|
|
|
|
|
|
|
|
344 |
|
345 |
_HEADER_ = '''
|
346 |
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
|
|
|
162 |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined]
|
163 |
image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined]
|
164 |
|
165 |
+
# rr.log("mvs/image", rr.Image(image))
|
166 |
+
# rr.log("mvs/latents", rr.Tensor(latents.squeeze()))
|
167 |
+
|
168 |
output_queue.put(("log", "mvs/image", rr.Image(image)))
|
169 |
output_queue.put(("log", "mvs/latents", rr.Tensor(latents.squeeze())))
|
170 |
|
171 |
return callback_kwargs
|
172 |
|
|
|
173 |
def generate_mvs(input_image, sample_steps, sample_seed):
|
174 |
|
175 |
seed_everything(sample_seed)
|
|
|
202 |
z123_thread.join()
|
203 |
|
204 |
|
|
|
205 |
def make3d(images: Image.Image):
|
206 |
output_queue = SimpleQueue()
|
207 |
handle = threading.Thread(target=_make3d, args=[output_queue, images])
|
|
|
315 |
|
316 |
output_queue.put(("mesh", mesh_out))
|
317 |
|
318 |
+
|
319 |
+
@spaces.GPU
|
320 |
@rr.thread_local_stream("InstantMesh")
|
321 |
def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed):
|
322 |
preprocessed_image = preprocess(input_image, do_remove_background)
|
|
|
344 |
if msg[0] == "log":
|
345 |
rr.log(msg[1], msg[2])
|
346 |
yield stream.read()
|
347 |
+
if msg[0] == "mesh":
|
348 |
+
mesh = msg[1]
|
349 |
+
|
350 |
+
# return mesh
|
351 |
|
352 |
_HEADER_ = '''
|
353 |
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
|