Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
a0fdd41
1
Parent(s):
9e0db6d
debug printing for make3d
Browse files
app.py
CHANGED
@@ -12,11 +12,13 @@ from omegaconf import OmegaConf
|
|
12 |
from einops import rearrange, repeat
|
13 |
from tqdm import tqdm
|
14 |
import threading
|
|
|
15 |
from typing import Any
|
16 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
17 |
import rerun as rr
|
18 |
from gradio_rerun import Rerun
|
19 |
|
|
|
20 |
from src.utils.train_util import instantiate_from_config
|
21 |
from src.utils.camera_util import (
|
22 |
FOV_to_intrinsics,
|
@@ -25,6 +27,7 @@ from src.utils.camera_util import (
|
|
25 |
)
|
26 |
from src.utils.mesh_util import save_obj, save_glb
|
27 |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
|
|
28 |
|
29 |
import tempfile
|
30 |
from functools import partial
|
@@ -126,7 +129,7 @@ print(f'type(pipeline)={type(pipeline)}')
|
|
126 |
# load reconstruction model
|
127 |
print('Loading reconstruction model ...')
|
128 |
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
129 |
-
model = instantiate_from_config(model_config)
|
130 |
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
131 |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
132 |
model.load_state_dict(state_dict, strict=True)
|
@@ -152,29 +155,30 @@ def preprocess(input_image, do_remove_background):
|
|
152 |
return input_image
|
153 |
|
154 |
|
155 |
-
def pipeline_callback(pipe: Any, step_index: int, timestep: float, callback_kwargs: dict[str, Any]) -> dict[str, Any]:
|
156 |
rr.set_time_sequence("iteration", step_index)
|
157 |
rr.set_time_seconds("timestep", timestep)
|
158 |
latents = callback_kwargs["latents"]
|
159 |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined]
|
160 |
image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined]
|
161 |
|
162 |
-
|
163 |
-
|
|
|
164 |
return callback_kwargs
|
165 |
|
166 |
@spaces.GPU
|
167 |
-
def generate_mvs(input_image, sample_steps, sample_seed):
|
168 |
-
|
169 |
-
print(threading.get_ident())
|
170 |
|
171 |
seed_everything(sample_seed)
|
172 |
|
173 |
-
|
174 |
input_image,
|
175 |
num_inference_steps=sample_steps,
|
176 |
-
callback_on_step_end=pipeline_callback,
|
177 |
-
)
|
|
|
|
|
178 |
|
179 |
# sampling
|
180 |
# z123_image = pipeline(
|
@@ -190,10 +194,9 @@ def generate_mvs(input_image, sample_steps, sample_seed):
|
|
190 |
|
191 |
# return z123_image, show_image
|
192 |
|
193 |
-
|
194 |
@spaces.GPU
|
195 |
-
def make3d(images):
|
196 |
-
|
197 |
global model
|
198 |
if IS_FLEXICUBES:
|
199 |
model.init_flexicubes_geometry(device, use_renderer=False)
|
@@ -205,9 +208,12 @@ def make3d(images):
|
|
205 |
|
206 |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
207 |
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
|
|
208 |
|
209 |
images = images.unsqueeze(0).to(device)
|
210 |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
|
|
|
|
211 |
|
212 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
213 |
print(mesh_fpath)
|
@@ -219,26 +225,31 @@ def make3d(images):
|
|
219 |
with torch.no_grad():
|
220 |
# get triplane
|
221 |
planes = model.forward_planes(images, input_cameras)
|
|
|
222 |
|
223 |
# # get video
|
224 |
-
|
225 |
-
|
226 |
|
227 |
# frames = []
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
242 |
# frames = torch.cat(frames, dim=1)
|
243 |
|
244 |
# images_to_video(
|
@@ -255,10 +266,13 @@ def make3d(images):
|
|
255 |
use_texture_map=False,
|
256 |
**infer_config,
|
257 |
)
|
|
|
|
|
258 |
|
259 |
vertices, faces, vertex_colors = mesh_out
|
260 |
vertices = vertices[:, [1, 2, 0]]
|
261 |
-
|
|
|
262 |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
263 |
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
264 |
|
@@ -266,31 +280,47 @@ def make3d(images):
|
|
266 |
|
267 |
return mesh_fpath, mesh_glb_fpath
|
268 |
|
269 |
-
@spaces.GPU
|
270 |
-
def print_thread_ident_from_gpu():
|
271 |
-
print(threading.get_ident())
|
272 |
-
|
273 |
@rr.thread_local_stream("InstantMesh")
|
274 |
def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed):
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
-
|
277 |
-
print_thread_ident_from_gpu()
|
278 |
|
279 |
-
|
280 |
|
281 |
-
|
|
|
282 |
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
|
|
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
294 |
|
295 |
_HEADER_ = '''
|
296 |
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
|
@@ -343,14 +373,6 @@ with gr.Blocks() as demo:
|
|
343 |
type="pil",
|
344 |
elem_id="content_image",
|
345 |
)
|
346 |
-
processed_image = gr.Image(
|
347 |
-
label="Processed Image",
|
348 |
-
image_mode="RGBA",
|
349 |
-
#width=256,
|
350 |
-
#height=256,
|
351 |
-
type="pil",
|
352 |
-
interactive=False
|
353 |
-
)
|
354 |
with gr.Row():
|
355 |
with gr.Group():
|
356 |
do_remove_background = gr.Checkbox(
|
|
|
12 |
from einops import rearrange, repeat
|
13 |
from tqdm import tqdm
|
14 |
import threading
|
15 |
+
from queue import SimpleQueue
|
16 |
from typing import Any
|
17 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
18 |
import rerun as rr
|
19 |
from gradio_rerun import Rerun
|
20 |
|
21 |
+
import src
|
22 |
from src.utils.train_util import instantiate_from_config
|
23 |
from src.utils.camera_util import (
|
24 |
FOV_to_intrinsics,
|
|
|
27 |
)
|
28 |
from src.utils.mesh_util import save_obj, save_glb
|
29 |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
|
30 |
+
from src.models.lrm_mesh import InstantMesh
|
31 |
|
32 |
import tempfile
|
33 |
from functools import partial
|
|
|
129 |
# load reconstruction model
|
130 |
print('Loading reconstruction model ...')
|
131 |
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
|
132 |
+
model: InstantMesh = instantiate_from_config(model_config)
|
133 |
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
134 |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
135 |
model.load_state_dict(state_dict, strict=True)
|
|
|
155 |
return input_image
|
156 |
|
157 |
|
158 |
+
def pipeline_callback(output_queue: SimpleQueue, pipe: Any, step_index: int, timestep: float, callback_kwargs: dict[str, Any]) -> dict[str, Any]:
|
159 |
rr.set_time_sequence("iteration", step_index)
|
160 |
rr.set_time_seconds("timestep", timestep)
|
161 |
latents = callback_kwargs["latents"]
|
162 |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined]
|
163 |
image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined]
|
164 |
|
165 |
+
output_queue.put(("log", "mvs/image", rr.Image(image)))
|
166 |
+
output_queue.put(("log", "mvs/latents", rr.Tensor(latents.squeeze())))
|
167 |
+
|
168 |
return callback_kwargs
|
169 |
|
170 |
@spaces.GPU
|
171 |
+
def generate_mvs(input_image, sample_steps, sample_seed, output_queue: SimpleQueue):
|
|
|
|
|
172 |
|
173 |
seed_everything(sample_seed)
|
174 |
|
175 |
+
z123_image = pipeline(
|
176 |
input_image,
|
177 |
num_inference_steps=sample_steps,
|
178 |
+
callback_on_step_end=lambda *args, **kwargs: pipeline_callback(output_queue, *args, **kwargs),
|
179 |
+
).images[0]
|
180 |
+
|
181 |
+
output_queue.put(("z123_image", z123_image))
|
182 |
|
183 |
# sampling
|
184 |
# z123_image = pipeline(
|
|
|
194 |
|
195 |
# return z123_image, show_image
|
196 |
|
|
|
197 |
@spaces.GPU
|
198 |
+
def make3d(output_queue: SimpleQueue, images: Image.Image):
|
199 |
+
print(f'type(images)={type(images)}')
|
200 |
global model
|
201 |
if IS_FLEXICUBES:
|
202 |
model.init_flexicubes_geometry(device, use_renderer=False)
|
|
|
208 |
|
209 |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
210 |
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
211 |
+
print(f'type(input_cameras)={type(input_cameras)}')
|
212 |
|
213 |
images = images.unsqueeze(0).to(device)
|
214 |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
215 |
+
print(f'type(images)={type(images)}')
|
216 |
+
|
217 |
|
218 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
219 |
print(mesh_fpath)
|
|
|
225 |
with torch.no_grad():
|
226 |
# get triplane
|
227 |
planes = model.forward_planes(images, input_cameras)
|
228 |
+
print(f'type(planes)={type(planes)}')
|
229 |
|
230 |
# # get video
|
231 |
+
chunk_size = 20 if IS_FLEXICUBES else 1
|
232 |
+
render_size = 384
|
233 |
|
234 |
# frames = []
|
235 |
+
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
236 |
+
if IS_FLEXICUBES:
|
237 |
+
frame = model.forward_geometry(
|
238 |
+
planes,
|
239 |
+
render_cameras[:, i:i+chunk_size],
|
240 |
+
render_size=render_size,
|
241 |
+
)['img']
|
242 |
+
else:
|
243 |
+
frame = model.synthesizer(
|
244 |
+
planes,
|
245 |
+
cameras=render_cameras[:, i:i+chunk_size],
|
246 |
+
render_size=render_size,
|
247 |
+
)['images_rgb']
|
248 |
+
|
249 |
+
print(f'type(framee)={type(frame)}')
|
250 |
+
output_queue.put(("log", "3dvideo", rr.Image(frame)))
|
251 |
+
# frames.append(frame)
|
252 |
+
|
253 |
# frames = torch.cat(frames, dim=1)
|
254 |
|
255 |
# images_to_video(
|
|
|
266 |
use_texture_map=False,
|
267 |
**infer_config,
|
268 |
)
|
269 |
+
print(f'type(mesh_out)={type(mesh_out)}')
|
270 |
+
|
271 |
|
272 |
vertices, faces, vertex_colors = mesh_out
|
273 |
vertices = vertices[:, [1, 2, 0]]
|
274 |
+
print(f'type(vertices)={type(vertices)}')
|
275 |
+
|
276 |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
277 |
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
278 |
|
|
|
280 |
|
281 |
return mesh_fpath, mesh_glb_fpath
|
282 |
|
|
|
|
|
|
|
|
|
283 |
@rr.thread_local_stream("InstantMesh")
|
284 |
def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed):
|
285 |
+
preprocessed_image = preprocess(input_image, do_remove_background)
|
286 |
+
|
287 |
+
stream = rr.binary_stream()
|
288 |
+
|
289 |
+
rr.log("preprocessed_image", rr.Image(preprocessed_image))
|
290 |
|
291 |
+
yield stream.read()
|
|
|
292 |
|
293 |
+
output_queue = SimpleQueue()
|
294 |
|
295 |
+
mvs_thread = threading.Thread(target=generate_mvs, args=[input_image, sample_steps, sample_seed, output_queue])
|
296 |
+
mvs_thread.start()
|
297 |
|
298 |
+
while True:
|
299 |
+
msg = output_queue.get()
|
300 |
+
if msg[0] == "z123_image":
|
301 |
+
z123_image = msg[1]
|
302 |
+
break
|
303 |
+
elif msg[0] == "log":
|
304 |
+
entity_path = msg[1]
|
305 |
+
entity = msg[2]
|
306 |
+
rr.log(entity_path, entity)
|
307 |
+
yield stream.read()
|
308 |
+
|
309 |
+
mvs_thread.join()
|
310 |
|
311 |
+
rr.log("z123image", rr.Image(z123_image))
|
312 |
+
yield stream.read()
|
313 |
|
314 |
+
mesh_fpath, mesh_glb_fpath = make3d(output_queue, z123_image)
|
315 |
+
|
316 |
+
while not output_queue.empty():
|
317 |
+
msg = output_queue.get()
|
318 |
+
if msg[0] == "log":
|
319 |
+
entity_path = msg[1]
|
320 |
+
entity = msg[2]
|
321 |
+
rr.log(entity_path, entity)
|
322 |
+
yield stream.read()
|
323 |
+
|
324 |
|
325 |
_HEADER_ = '''
|
326 |
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
|
|
|
373 |
type="pil",
|
374 |
elem_id="content_image",
|
375 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
with gr.Row():
|
377 |
with gr.Group():
|
378 |
do_remove_background = gr.Checkbox(
|