Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
b00b3bb
1
Parent(s):
75eb903
add blueprint, fix bug where it wouldn't use the preprocessed image
Browse files
app.py
CHANGED
@@ -16,6 +16,7 @@ from queue import SimpleQueue
|
|
16 |
from typing import Any
|
17 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
18 |
import rerun as rr
|
|
|
19 |
from gradio_rerun import Rerun
|
20 |
|
21 |
import src
|
@@ -156,15 +157,10 @@ def preprocess(input_image, do_remove_background):
|
|
156 |
|
157 |
|
158 |
def pipeline_callback(output_queue: SimpleQueue, pipe: Any, step_index: int, timestep: float, callback_kwargs: dict[str, Any]) -> dict[str, Any]:
|
159 |
-
rr.set_time_sequence("iteration", step_index)
|
160 |
-
rr.set_time_seconds("timestep", timestep)
|
161 |
latents = callback_kwargs["latents"]
|
162 |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined]
|
163 |
image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined]
|
164 |
|
165 |
-
# rr.log("mvs/image", rr.Image(image))
|
166 |
-
# rr.log("mvs/latents", rr.Tensor(latents.squeeze()))
|
167 |
-
|
168 |
output_queue.put(("log", "mvs/image", rr.Image(image)))
|
169 |
output_queue.put(("log", "mvs/latents", rr.Tensor(latents.squeeze())))
|
170 |
|
@@ -174,6 +170,7 @@ def generate_mvs(input_image, sample_steps, sample_seed):
|
|
174 |
|
175 |
seed_everything(sample_seed)
|
176 |
|
|
|
177 |
def thread_target(output_queue, input_image, sample_steps):
|
178 |
z123_image = pipeline(
|
179 |
input_image,
|
@@ -182,6 +179,7 @@ def generate_mvs(input_image, sample_steps, sample_seed):
|
|
182 |
).images[0]
|
183 |
output_queue.put(("z123_image", z123_image))
|
184 |
|
|
|
185 |
output_queue = SimpleQueue()
|
186 |
z123_thread = threading.Thread(
|
187 |
target=thread_target,
|
@@ -197,11 +195,10 @@ def generate_mvs(input_image, sample_steps, sample_seed):
|
|
197 |
while True:
|
198 |
msg = output_queue.get()
|
199 |
yield msg
|
200 |
-
if msg[0] == "z123_image":
|
201 |
-
break
|
202 |
z123_thread.join()
|
203 |
|
204 |
-
|
205 |
def make3d(images: Image.Image):
|
206 |
output_queue = SimpleQueue()
|
207 |
handle = threading.Thread(target=_make3d, args=[output_queue, images])
|
@@ -214,7 +211,6 @@ def make3d(images: Image.Image):
|
|
214 |
handle.join()
|
215 |
|
216 |
def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
217 |
-
print(f'type(images)={type(images)}')
|
218 |
global model
|
219 |
if IS_FLEXICUBES:
|
220 |
model.init_flexicubes_geometry(device, use_renderer=False)
|
@@ -226,15 +222,11 @@ def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
226 |
|
227 |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
228 |
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
229 |
-
print(f'type(input_cameras)={type(input_cameras)}')
|
230 |
|
231 |
images = images.unsqueeze(0).to(device)
|
232 |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
233 |
-
print(f'type(images)={type(images)}')
|
234 |
-
|
235 |
|
236 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
237 |
-
print(mesh_fpath)
|
238 |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
239 |
mesh_dirname = os.path.dirname(mesh_fpath)
|
240 |
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
@@ -243,7 +235,6 @@ def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
243 |
with torch.no_grad():
|
244 |
# get triplane
|
245 |
planes = model.forward_planes(images, input_cameras)
|
246 |
-
print(f'type(planes)={type(planes)}')
|
247 |
|
248 |
# get video
|
249 |
# chunk_size = 20 if IS_FLEXICUBES else 1
|
@@ -283,7 +274,6 @@ def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
283 |
use_texture_map=False,
|
284 |
**infer_config,
|
285 |
)
|
286 |
-
print(f'type(mesh_out)={type(mesh_out)}')
|
287 |
|
288 |
vertices, faces, vertex_colors = mesh_out
|
289 |
|
@@ -301,10 +291,6 @@ def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
301 |
|
302 |
vertices = vertices[:, [1, 2, 0]]
|
303 |
|
304 |
-
print(f'type(vertices)={type(vertices)}')
|
305 |
-
print(f'type(faces)={type(faces)}')
|
306 |
-
print(f'type(vertex_colors)={type(vertex_colors)}')
|
307 |
-
|
308 |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
309 |
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
310 |
|
@@ -312,19 +298,37 @@ def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
312 |
|
313 |
output_queue.put(("mesh", mesh_out))
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
@spaces.GPU
|
317 |
@rr.thread_local_stream("InstantMesh")
|
318 |
def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed):
|
319 |
-
preprocessed_image = preprocess(input_image, do_remove_background)
|
320 |
|
321 |
stream = rr.binary_stream()
|
322 |
|
|
|
|
|
|
|
|
|
|
|
323 |
rr.log("preprocessed_image", rr.Image(preprocessed_image))
|
324 |
|
325 |
yield stream.read()
|
326 |
|
327 |
-
for msg in generate_mvs(
|
328 |
if msg[0] == "z123_image":
|
329 |
z123_image = msg[1]
|
330 |
break
|
@@ -426,7 +430,7 @@ with gr.Blocks() as demo:
|
|
426 |
examples_per_page=16
|
427 |
)
|
428 |
|
429 |
-
with gr.Column(scale=
|
430 |
|
431 |
viewer = Rerun(streaming=True, height=800)
|
432 |
|
|
|
16 |
from typing import Any
|
17 |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
18 |
import rerun as rr
|
19 |
+
import rerun.blueprint as rrb
|
20 |
from gradio_rerun import Rerun
|
21 |
|
22 |
import src
|
|
|
157 |
|
158 |
|
159 |
def pipeline_callback(output_queue: SimpleQueue, pipe: Any, step_index: int, timestep: float, callback_kwargs: dict[str, Any]) -> dict[str, Any]:
|
|
|
|
|
160 |
latents = callback_kwargs["latents"]
|
161 |
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined]
|
162 |
image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined]
|
163 |
|
|
|
|
|
|
|
164 |
output_queue.put(("log", "mvs/image", rr.Image(image)))
|
165 |
output_queue.put(("log", "mvs/latents", rr.Tensor(latents.squeeze())))
|
166 |
|
|
|
170 |
|
171 |
seed_everything(sample_seed)
|
172 |
|
173 |
+
|
174 |
def thread_target(output_queue, input_image, sample_steps):
|
175 |
z123_image = pipeline(
|
176 |
input_image,
|
|
|
179 |
).images[0]
|
180 |
output_queue.put(("z123_image", z123_image))
|
181 |
|
182 |
+
|
183 |
output_queue = SimpleQueue()
|
184 |
z123_thread = threading.Thread(
|
185 |
target=thread_target,
|
|
|
195 |
while True:
|
196 |
msg = output_queue.get()
|
197 |
yield msg
|
198 |
+
if msg[0] == "z123_image":
|
199 |
+
break
|
200 |
z123_thread.join()
|
201 |
|
|
|
202 |
def make3d(images: Image.Image):
|
203 |
output_queue = SimpleQueue()
|
204 |
handle = threading.Thread(target=_make3d, args=[output_queue, images])
|
|
|
211 |
handle.join()
|
212 |
|
213 |
def _make3d(output_queue: SimpleQueue, images: Image.Image):
|
|
|
214 |
global model
|
215 |
if IS_FLEXICUBES:
|
216 |
model.init_flexicubes_geometry(device, use_renderer=False)
|
|
|
222 |
|
223 |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
224 |
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)
|
|
|
225 |
|
226 |
images = images.unsqueeze(0).to(device)
|
227 |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
|
|
|
|
228 |
|
229 |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
|
|
230 |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
231 |
mesh_dirname = os.path.dirname(mesh_fpath)
|
232 |
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
|
|
235 |
with torch.no_grad():
|
236 |
# get triplane
|
237 |
planes = model.forward_planes(images, input_cameras)
|
|
|
238 |
|
239 |
# get video
|
240 |
# chunk_size = 20 if IS_FLEXICUBES else 1
|
|
|
274 |
use_texture_map=False,
|
275 |
**infer_config,
|
276 |
)
|
|
|
277 |
|
278 |
vertices, faces, vertex_colors = mesh_out
|
279 |
|
|
|
291 |
|
292 |
vertices = vertices[:, [1, 2, 0]]
|
293 |
|
|
|
|
|
|
|
|
|
294 |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
|
295 |
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
296 |
|
|
|
298 |
|
299 |
output_queue.put(("mesh", mesh_out))
|
300 |
|
301 |
+
def generate_blueprint() -> rrb.Blueprint:
|
302 |
+
return rrb.Blueprint(
|
303 |
+
rrb.Horizontal(
|
304 |
+
rrb.Spatial3DView(origin="mesh"),
|
305 |
+
rrb.Grid(
|
306 |
+
rrb.Spatial2DView(origin="z123image"),
|
307 |
+
rrb.Spatial2DView(origin="preprocessed_image"),
|
308 |
+
rrb.Spatial2DView(origin="mvs/image"),
|
309 |
+
rrb.TensorView(origin="mvs/latents"),
|
310 |
+
),
|
311 |
+
column_shares=[1, 1],
|
312 |
+
),
|
313 |
+
collapse_panels=True,
|
314 |
+
)
|
315 |
|
316 |
@spaces.GPU
|
317 |
@rr.thread_local_stream("InstantMesh")
|
318 |
def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed):
|
|
|
319 |
|
320 |
stream = rr.binary_stream()
|
321 |
|
322 |
+
blueprint = generate_blueprint()
|
323 |
+
rr.send_blueprint(blueprint)
|
324 |
+
yield stream.read()
|
325 |
+
|
326 |
+
preprocessed_image = preprocess(input_image, do_remove_background)
|
327 |
rr.log("preprocessed_image", rr.Image(preprocessed_image))
|
328 |
|
329 |
yield stream.read()
|
330 |
|
331 |
+
for msg in generate_mvs(preprocessed_image, sample_steps, sample_seed):
|
332 |
if msg[0] == "z123_image":
|
333 |
z123_image = msg[1]
|
334 |
break
|
|
|
430 |
examples_per_page=16
|
431 |
)
|
432 |
|
433 |
+
with gr.Column(scale=2):
|
434 |
|
435 |
viewer = Rerun(streaming=True, height=800)
|
436 |
|