Spaces:
Sleeping
Sleeping
File size: 2,459 Bytes
52794ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import os
import json
import streamlit as st
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from vectorize_documents import embeddings
working_dir = os.path.dirname(os.path.abspath(__file__))
config_data = json.load(open(f"{working_dir}/config.json"))
GROQ_API_KEY = config_data["GROQ_API_KEY"]
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
def setup_vectorstore():
persist_directory = f"{working_dir}/vector_db_dir"
embedddings = HuggingFaceEmbeddings()
vectorstore = Chroma(persist_directory=persist_directory,
embedding_function=embeddings)
return vectorstore
def chat_chain(vectorstore):
llm = ChatGroq(model="llama-3.1-70b-versatile",
temperature=0)
retriever = vectorstore.as_retriever()
memory = ConversationBufferMemory(
llm=llm,
output_key="answer",
memory_key="chat_history",
return_messages=True
)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
verbose=True,
return_source_documents=True
)
return chain
st.set_page_config(
page_title="Multi Doc Chat",
page_icon = "π",
layout="centered"
)
st.title("π Multi Documents Chatbot")
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = setup_vectorstore()
if "conversationsal_chain" not in st.session_state:
st.session_state.conversationsal_chain = chat_chain(st.session_state.vectorstore)
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.markdown(message["content"])
user_input = st.chat_input("Ask AI...")
if user_input:
st.session_state.chat_history.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
with st.chat_message("assistant"):
response = st.session_state.conversationsal_chain({"question": user_input})
assistant_response = response["answer"]
st.markdown(assistant_response)
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|