Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,38 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
-
from
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
6 |
-
from
|
7 |
from langchain.chains import create_retrieval_chain
|
8 |
-
from
|
9 |
-
from
|
10 |
-
from
|
11 |
-
from fastapi import FastAPI
|
12 |
-
from pydantic import BaseModel
|
13 |
-
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
14 |
import time
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def clean_response(response):
|
17 |
-
# Remove any leading/trailing whitespace, including newlines
|
18 |
cleaned = response.strip()
|
19 |
-
|
20 |
-
# Remove any enclosing quotation marks
|
21 |
cleaned = re.sub(r'^["\']+|["\']+$', '', cleaned)
|
22 |
-
|
23 |
-
# Replace multiple newlines with a single newline
|
24 |
cleaned = re.sub(r'\n+', '\n', cleaned)
|
25 |
-
|
26 |
-
# Remove any remaining '\n' characters
|
27 |
cleaned = cleaned.replace('\\n', '')
|
28 |
-
|
29 |
return cleaned
|
30 |
|
31 |
-
app = FastAPI()
|
32 |
-
|
33 |
-
app.add_middleware(
|
34 |
-
CORSMiddleware,
|
35 |
-
allow_origins=["*"],
|
36 |
-
allow_credentials=True,
|
37 |
-
allow_methods=["*"],
|
38 |
-
allow_headers=["*"],
|
39 |
-
)
|
40 |
-
|
41 |
anthropic_api_key = os.environ.get('ANTHROPIC_API_KEY')
|
42 |
llm = ChatAnthropic(anthropic_api_key=anthropic_api_key, model_name="claude-3-sonnet-20240229")
|
43 |
|
44 |
-
@app.get("/")
|
45 |
-
def read_root():
|
46 |
-
return {"Hello": "World"}
|
47 |
-
|
48 |
class Query(BaseModel):
|
49 |
query_text: str
|
50 |
|
@@ -64,7 +52,7 @@ Question: {input}
|
|
64 |
|
65 |
def vector_embedding():
|
66 |
try:
|
67 |
-
file_path = "
|
68 |
if not os.path.exists(file_path):
|
69 |
print(f"The file {file_path} does not exist.")
|
70 |
return {"response": "Error: Data file not found"}
|
@@ -84,7 +72,7 @@ def vector_embedding():
|
|
84 |
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
85 |
|
86 |
db = FAISS.from_documents(chunks, model_norm)
|
87 |
-
db.save_local("
|
88 |
|
89 |
print("Vector store created and saved successfully.")
|
90 |
return {"response": "Vector Store DB Is Ready"}
|
@@ -99,11 +87,15 @@ def get_embeddings():
|
|
99 |
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
100 |
return model_norm
|
101 |
|
|
|
|
|
|
|
|
|
102 |
@app.post("/anthropic")
|
103 |
def read_item(query: Query):
|
104 |
try:
|
105 |
embeddings = get_embeddings()
|
106 |
-
vectors = FAISS.load_local("
|
107 |
except Exception as e:
|
108 |
print(f"Error loading vector store: {str(e)}")
|
109 |
return {"response": "Vector Store Not Found or Error Loading. Please run /setup first."}
|
@@ -117,16 +109,18 @@ def read_item(query: Query):
|
|
117 |
response = retrieval_chain.invoke({'input': prompt1})
|
118 |
print("Response time:", time.process_time() - start)
|
119 |
|
120 |
-
# Apply the cleaning function to the response
|
121 |
cleaned_response = clean_response(response['answer'])
|
122 |
|
123 |
-
# For debugging, print the cleaned response
|
124 |
print("Cleaned response:", repr(cleaned_response))
|
125 |
|
126 |
-
return cleaned_response
|
127 |
else:
|
128 |
-
return "No Query Found"
|
129 |
|
130 |
@app.get("/setup")
|
131 |
def setup():
|
132 |
-
return vector_embedding()
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import re
|
3 |
+
from fastapi import FastAPI, Request
|
4 |
+
from fastapi.responses import HTMLResponse
|
5 |
+
from fastapi.staticfiles import StaticFiles
|
6 |
+
from fastapi.templating import Jinja2Templates
|
7 |
+
from pydantic import BaseModel
|
8 |
+
from langchain.chat_models import ChatAnthropic
|
9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
11 |
+
from langchain.prompts import ChatPromptTemplate
|
12 |
from langchain.chains import create_retrieval_chain
|
13 |
+
from langchain.vectorstores import FAISS
|
14 |
+
from langchain.document_loaders import TextLoader
|
15 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
|
|
|
|
|
16 |
import time
|
17 |
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
# Mount static files
|
21 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
22 |
+
|
23 |
+
# Set up Jinja2 templates
|
24 |
+
templates = Jinja2Templates(directory="templates")
|
25 |
+
|
26 |
def clean_response(response):
|
|
|
27 |
cleaned = response.strip()
|
|
|
|
|
28 |
cleaned = re.sub(r'^["\']+|["\']+$', '', cleaned)
|
|
|
|
|
29 |
cleaned = re.sub(r'\n+', '\n', cleaned)
|
|
|
|
|
30 |
cleaned = cleaned.replace('\\n', '')
|
|
|
31 |
return cleaned
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
anthropic_api_key = os.environ.get('ANTHROPIC_API_KEY')
|
34 |
llm = ChatAnthropic(anthropic_api_key=anthropic_api_key, model_name="claude-3-sonnet-20240229")
|
35 |
|
|
|
|
|
|
|
|
|
36 |
class Query(BaseModel):
|
37 |
query_text: str
|
38 |
|
|
|
52 |
|
53 |
def vector_embedding():
|
54 |
try:
|
55 |
+
file_path = "data.txt"
|
56 |
if not os.path.exists(file_path):
|
57 |
print(f"The file {file_path} does not exist.")
|
58 |
return {"response": "Error: Data file not found"}
|
|
|
72 |
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
73 |
|
74 |
db = FAISS.from_documents(chunks, model_norm)
|
75 |
+
db.save_local("vectors_db")
|
76 |
|
77 |
print("Vector store created and saved successfully.")
|
78 |
return {"response": "Vector Store DB Is Ready"}
|
|
|
87 |
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
88 |
return model_norm
|
89 |
|
90 |
+
@app.get("/", response_class=HTMLResponse)
|
91 |
+
async def read_root(request: Request):
|
92 |
+
return templates.TemplateResponse("index.html", {"request": request})
|
93 |
+
|
94 |
@app.post("/anthropic")
|
95 |
def read_item(query: Query):
|
96 |
try:
|
97 |
embeddings = get_embeddings()
|
98 |
+
vectors = FAISS.load_local("vectors_db", embeddings, allow_dangerous_deserialization=True)
|
99 |
except Exception as e:
|
100 |
print(f"Error loading vector store: {str(e)}")
|
101 |
return {"response": "Vector Store Not Found or Error Loading. Please run /setup first."}
|
|
|
109 |
response = retrieval_chain.invoke({'input': prompt1})
|
110 |
print("Response time:", time.process_time() - start)
|
111 |
|
|
|
112 |
cleaned_response = clean_response(response['answer'])
|
113 |
|
|
|
114 |
print("Cleaned response:", repr(cleaned_response))
|
115 |
|
116 |
+
return {"response": cleaned_response}
|
117 |
else:
|
118 |
+
return {"response": "No Query Found"}
|
119 |
|
120 |
@app.get("/setup")
|
121 |
def setup():
|
122 |
+
return vector_embedding()
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
import uvicorn
|
126 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|