Update app/main.py
Browse files- app/main.py +38 -68
app/main.py
CHANGED
@@ -12,92 +12,57 @@ from fastapi.middleware.cors import CORSMiddleware
|
|
12 |
from fastapi import FastAPI
|
13 |
from pydantic import BaseModel
|
14 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
15 |
-
import nltk
|
16 |
import time
|
17 |
|
18 |
-
# Set
|
19 |
-
raise
|
20 |
-
|
21 |
-
def clean_response(response):
|
22 |
-
# Remove any leading/trailing whitespace, including newlines
|
23 |
-
cleaned = response.strip()
|
24 |
-
|
25 |
-
# Remove any enclosing quotation marks
|
26 |
-
cleaned = re.sub(r'^["\']+|["\']+$', '', cleaned)
|
27 |
-
|
28 |
-
# Replace multiple newlines with a single newline
|
29 |
-
cleaned = re.sub(r'\n+', '\n', cleaned)
|
30 |
-
|
31 |
-
# Remove any remaining '\n' characters
|
32 |
-
cleaned = cleaned.replace('\\n', '')
|
33 |
-
|
34 |
-
return cleaned
|
35 |
-
|
36 |
app = FastAPI()
|
|
|
|
|
37 |
openai_api_key = os.environ.get('OPENAI_API_KEY')
|
38 |
llm = ChatOpenAI(
|
39 |
api_key=openai_api_key,
|
40 |
-
model_name="gpt-4-turbo-preview",
|
41 |
-
temperature=0.7
|
42 |
)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
@app.get("/")
|
47 |
def read_root():
|
48 |
return {"Hello": "World"}
|
49 |
|
50 |
class Query(BaseModel):
|
51 |
-
|
52 |
query_text: str
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
prompt = ChatPromptTemplate.from_template(
|
55 |
"""
|
56 |
-
You are a helpful assistant designed specifically for the Thapar Institute of Engineering and Technology (TIET), a renowned technical college. Your task is to answer all queries related to TIET.
|
57 |
-
You may elaborate on your answers slightly to provide more information, but avoid sounding boastful or exaggerating. Stay focused on the context provided.
|
58 |
-
If the query is not related to TIET or falls outside the context of education, respond with:
|
59 |
-
"Sorry, I cannot help with that. I'm specifically designed to answer questions about the Thapar Institute of Engineering and Technology.
|
60 |
-
For more information, please contact at our toll-free number: 18002024100 or E-mail us at [email protected]
|
61 |
<context>
|
62 |
{context}
|
63 |
</context>
|
64 |
-
Question: {input}
|
65 |
"""
|
66 |
)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
71 |
-
chunks = text_splitter.split_documents(documents)
|
72 |
-
|
73 |
-
print(f"Created {len(chunks)} chunks.")
|
74 |
-
|
75 |
-
model_name = "BAAI/bge-base-en"
|
76 |
-
encode_kwargs = {'normalize_embeddings': True}
|
77 |
-
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
78 |
-
|
79 |
-
db = FAISS.from_documents(chunks, model_norm)
|
80 |
-
db.save_local("./vectors_db")
|
81 |
-
|
82 |
-
print("Vector store created and saved successfully.")
|
83 |
-
return {"response": "Vector Store DB Is Ready"}
|
84 |
-
|
85 |
-
model_norm = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
86 |
-
return model_norm
|
87 |
-
|
88 |
-
@app.post("/chat") # Changed from /anthropic to /chat
|
89 |
def read_item(query: Query):
|
90 |
try:
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
vectors = FAISS.load_local("./vectors_db", embeddings, allow_dangerous_deserialization=True)
|
97 |
except Exception as e:
|
98 |
print(f"Error loading vector store: {str(e)}")
|
99 |
return {"response": "Vector Store Not Found or Error Loading. Please run /setup first."}
|
100 |
-
|
101 |
prompt1 = query.query_text
|
102 |
if prompt1:
|
103 |
start = time.process_time()
|
@@ -106,23 +71,28 @@ def read_item(query: Query):
|
|
106 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
107 |
response = retrieval_chain.invoke({'input': prompt1})
|
108 |
|
109 |
-
print("Response time:", time.process_time() - start)
|
110 |
-
|
111 |
-
# Apply the cleaning function to the response
|
112 |
cleaned_response = clean_response(response['answer'])
|
113 |
-
|
114 |
-
|
115 |
-
print("Cleaned response:", repr(cleaned_response))
|
116 |
-
|
117 |
-
return cleaned_response
|
118 |
else:
|
119 |
-
return "No Query Found"
|
120 |
|
121 |
@app.get("/setup")
|
122 |
def setup():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
import uvicorn
|
126 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
127 |
-
|
128 |
-
|
|
|
12 |
from fastapi import FastAPI
|
13 |
from pydantic import BaseModel
|
14 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
15 |
+
import nltk
|
16 |
import time
|
17 |
|
18 |
+
# Set up FastAPI app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
app = FastAPI()
|
20 |
+
|
21 |
+
# Get OpenAI API key
|
22 |
openai_api_key = os.environ.get('OPENAI_API_KEY')
|
23 |
llm = ChatOpenAI(
|
24 |
api_key=openai_api_key,
|
25 |
+
model_name="gpt-4-turbo-preview",
|
26 |
+
temperature=0.7,
|
27 |
)
|
28 |
|
|
|
|
|
29 |
@app.get("/")
|
30 |
def read_root():
|
31 |
return {"Hello": "World"}
|
32 |
|
33 |
class Query(BaseModel):
|
|
|
34 |
query_text: str
|
35 |
|
36 |
+
def clean_response(response):
|
37 |
+
cleaned = response.strip()
|
38 |
+
cleaned = re.sub(r'^["\']+|["\']+$', '', cleaned)
|
39 |
+
cleaned = re.sub(r'\n+', '\n', cleaned)
|
40 |
+
cleaned = cleaned.replace('\\n', '')
|
41 |
+
return cleaned
|
42 |
+
|
43 |
prompt = ChatPromptTemplate.from_template(
|
44 |
"""
|
45 |
+
You are a helpful assistant designed specifically for the Thapar Institute of Engineering and Technology (TIET), a renowned technical college. Your task is to answer all queries related to TIET. If a question falls outside of this context, please decline by stating, 'Sorry, I cannot help with that.' For more information, please contact our toll-free number: 18002024100 or email us at admissions@thapar.edu.
|
|
|
|
|
|
|
|
|
46 |
<context>
|
47 |
{context}
|
48 |
</context>
|
49 |
+
Question: {input}
|
50 |
"""
|
51 |
)
|
52 |
|
53 |
+
@app.post("/chat")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def read_item(query: Query):
|
55 |
try:
|
56 |
+
# Load vector store
|
57 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
58 |
+
model_name="BAAI/bge-base-en",
|
59 |
+
encode_kwargs={'normalize_embeddings': True}
|
60 |
+
)
|
61 |
vectors = FAISS.load_local("./vectors_db", embeddings, allow_dangerous_deserialization=True)
|
62 |
except Exception as e:
|
63 |
print(f"Error loading vector store: {str(e)}")
|
64 |
return {"response": "Vector Store Not Found or Error Loading. Please run /setup first."}
|
65 |
+
|
66 |
prompt1 = query.query_text
|
67 |
if prompt1:
|
68 |
start = time.process_time()
|
|
|
71 |
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
72 |
response = retrieval_chain.invoke({'input': prompt1})
|
73 |
|
|
|
|
|
|
|
74 |
cleaned_response = clean_response(response['answer'])
|
75 |
+
print("Response time:", time.process_time() - start)
|
76 |
+
return {"response": cleaned_response}
|
|
|
|
|
|
|
77 |
else:
|
78 |
+
return {"response": "No Query Found"}
|
79 |
|
80 |
@app.get("/setup")
|
81 |
def setup():
|
82 |
+
# Example setup function for vector embedding
|
83 |
+
documents = [] # Load your documents here
|
84 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
85 |
+
chunks = text_splitter.split_documents(documents)
|
86 |
+
|
87 |
+
model_name = "BAAI/bge-base-en"
|
88 |
+
encode_kwargs = {'normalize_embeddings': True}
|
89 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
90 |
+
|
91 |
+
db = FAISS.from_documents(chunks, embeddings)
|
92 |
+
db.save_local("./vectors_db")
|
93 |
+
print("Vector store created and saved successfully.")
|
94 |
+
return {"response": "Vector Store DB Is Ready"}
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
import uvicorn
|
98 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|