OR-2425-fall / app.py
ambrosfitz's picture
Update app.py
ff2fdee verified
raw
history blame
2.62 kB
import gradio as gr
import requests
API_URL = "http://154.12.226.68:8000"
def search_document(index_name, query, k):
url = f"{API_URL}/search/{index_name}"
payload = {"text": query, "k": k}
headers = {"Content-Type": "application/json"}
response = requests.post(url, json=payload, headers=headers)
results = response.json()
formatted_results = []
for result in results.get('results', []):
metadata = result.get('metadata', {})
formatted_result = f"Source: {metadata.get('source', 'Unknown')}\n"
formatted_result += f"Page: {metadata.get('page', 'Unknown')}\n"
formatted_result += f"Content: {metadata.get('content', 'No content available')}\n"
formatted_result += f"Distance: {result.get('distance', 'Unknown')}\n"
formatted_results.append(formatted_result)
return "\n\n".join(formatted_results)
def qa_document(index_name, question, k):
url = f"{API_URL}/qa/{index_name}"
payload = {"text": question, "k": k}
headers = {"Content-Type": "application/json"}
response = requests.post(url, json=payload, headers=headers)
result = response.json()
answer = result.get('answer', 'No answer available')
sources = result.get('sources', [])
formatted_sources = []
for source in sources:
formatted_source = f"Source: {source.get('source', 'Unknown')}\n"
formatted_source += f"Relevance Score: {source.get('relevance_score', 'Unknown')}"
formatted_sources.append(formatted_source)
formatted_result = f"Answer: {answer}\n\nSources:\n" + "\n\n".join(formatted_sources)
return formatted_result
with gr.Blocks() as demo:
gr.Markdown("# Document Search and Question Answering System")
index_name = gr.Textbox(label="Index Name", value="default")
with gr.Tab("Search"):
search_input = gr.Textbox(label="Search Query")
search_k = gr.Slider(1, 10, 5, step=1, label="Number of Results")
search_button = gr.Button("Search")
search_output = gr.Textbox(label="Search Results", lines=10)
search_button.click(search_document, inputs=[index_name, search_input, search_k], outputs=search_output)
with gr.Tab("Question Answering"):
qa_input = gr.Textbox(label="Question")
qa_k = gr.Slider(1, 10, 5, step=1, label="Number of Contexts to Consider")
qa_button = gr.Button("Ask Question")
qa_output = gr.Textbox(label="Answer and Sources", lines=10)
qa_button.click(qa_document, inputs=[index_name, qa_input, qa_k], outputs=qa_output)
demo.launch()