Spaces:
Running
Running
File size: 7,365 Bytes
8b95db4 bb9bc88 8b95db4 a52aae3 8b95db4 a52aae3 8b95db4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import gradio as gr
import requests
import json
import logging
import google.generativeai as genai
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# API Keys configuration
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not all([COHERE_API_KEY, MISTRAL_API_KEY, GEMINI_API_KEY]):
raise ValueError("Missing required API keys in environment variables")
# Configure Gemini
genai.configure(api_key=GEMINI_API_KEY)
# API endpoints configuration
COHERE_API_URL = "https://api.cohere.ai/v1/chat"
MISTRAL_API_URL = "https://api.mistral.ai/v1/chat/completions"
VECTOR_API_URL = "https://sendthat.cc"
HISTORY_INDEX = "onramps"
# Model configurations
MODELS = {
"Cohere": {
"name": "command-r-plus-08-2024",
"api_url": COHERE_API_URL,
"api_key": COHERE_API_KEY
},
"Mistral": {
"name": "ft:open-mistral-nemo:ef730d29:20241022:2a0e7d46",
"api_url": MISTRAL_API_URL,
"api_key": MISTRAL_API_KEY
},
"Gemini": {
"name": "gemini-1.5-pro",
"model": genai.GenerativeModel('gemini-1.5-pro'),
"api_key": GEMINI_API_KEY
}
}
def search_document(query, k):
try:
url = f"{VECTOR_API_URL}/search/{HISTORY_INDEX}"
payload = {"text": query, "k": k}
headers = {"Content-Type": "application/json"}
response = requests.post(url, json=payload, headers=headers)
response.raise_for_status()
return response.json(), "", k
except requests.exceptions.RequestException as e:
logging.error(f"Error in search: {e}")
return {"error": str(e)}, query, k
def generate_answer_cohere(question, context, citations):
headers = {
"Authorization": f"Bearer {MODELS['Cohere']['api_key']}",
"Content-Type": "application/json"
}
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer the question based on the given context. Include citations as [1], [2], etc.:"
payload = {
"message": prompt,
"model": MODELS['Cohere']['name'],
"preamble": "You are an AI-assistant chatbot. Provide thorough responses with citations.",
"chat_history": []
}
try:
response = requests.post(MODELS['Cohere']['api_url'], headers=headers, json=payload)
response.raise_for_status()
answer = response.json()['text']
answer += "\n\nSources:"
for i, citation in enumerate(citations, 1):
answer += f"\n[{i}] {citation}"
return answer
except requests.exceptions.RequestException as e:
logging.error(f"Error in generate_answer_cohere: {e}")
return f"An error occurred: {str(e)}"
def generate_answer_mistral(question, context, citations):
headers = {
"Authorization": f"Bearer {MODELS['Mistral']['api_key']}",
"Content-Type": "application/json",
"Accept": "application/json"
}
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer the question based on the given context and any pre-trained knowledge. Include citations as [1], [2], etc.:"
payload = {
"model": MODELS['Mistral']['name'],
"messages": [
{
"role": "user",
"content": prompt
}
]
}
try:
response = requests.post(MODELS['Mistral']['api_url'], headers=headers, json=payload)
response.raise_for_status()
answer = response.json()['choices'][0]['message']['content']
answer += "\n\nSources:"
for i, citation in enumerate(citations, 1):
answer += f"\n[{i}] {citation}"
return answer
except requests.exceptions.RequestException as e:
logging.error(f"Error in generate_answer_mistral: {e}")
return f"An error occurred: {str(e)}"
def generate_answer_gemini(question, context, citations):
prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer the question based on the given context. Include citations as [1], [2], etc.:"
try:
model = MODELS['Gemini']['model']
response = model.generate_content(
prompt,
generation_config=genai.types.GenerationConfig(
temperature=1.0,
top_k=40,
top_p=0.95,
max_output_tokens=8192,
)
)
answer = response.text
answer += "\n\nSources:"
for i, citation in enumerate(citations, 1):
answer += f"\n[{i}] {citation}"
return answer
except Exception as e:
logging.error(f"Error in generate_answer_gemini: {e}")
return f"An error occurred: {str(e)}"
def answer_question(question, model_choice, k=3):
# Search the vector database
search_results, _, _ = search_document(question, k)
# Extract and combine the retrieved contexts
if "results" in search_results:
contexts = []
citations = []
for item in search_results['results']:
contexts.append(item['metadata']['content'])
citations.append(f"{item['metadata'].get('title', 'Unknown Source')} - {item['metadata'].get('source', 'No source provided')}")
combined_context = " ".join(contexts)
else:
logging.error(f"Error in database search or no results found: {search_results}")
combined_context = ""
citations = []
# Generate answer using the selected model
if model_choice == "Cohere":
return generate_answer_cohere(question, combined_context, citations)
elif model_choice == "Mistral":
return generate_answer_mistral(question, combined_context, citations)
else:
return generate_answer_gemini(question, combined_context, citations)
def chatbot(message, history, model_choice):
response = answer_question(message, model_choice)
return response
# Example questions with default model choice
EXAMPLE_QUESTIONS = [
["Why was Anne Hutchinson banished from Massachusetts?", "Cohere"],
["What were the major causes of World War I?", "Mistral"],
["Who was the first President of the United States?", "Gemini"],
["What was the significance of the Industrial Revolution?", "Cohere"]
]
# Create Gradio interface
with gr.Blocks(theme="soft") as iface:
gr.Markdown("# History Chatbot")
gr.Markdown("Ask me anything about history, and I'll provide answers with citations!")
with gr.Row():
model_choice = gr.Radio(
choices=["Cohere", "Mistral", "Gemini"],
value="Cohere",
label="Choose LLM Model",
info="Select which AI model to use for generating responses"
)
chatbot_interface = gr.ChatInterface(
fn=lambda message, history, model: chatbot(message, history, model),
additional_inputs=[model_choice],
chatbot=gr.Chatbot(height=300),
textbox=gr.Textbox(placeholder="Ask a question about history...", container=False, scale=7),
examples=EXAMPLE_QUESTIONS,
cache_examples=False,
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
)
# Launch the app
if __name__ == "__main__":
iface.launch() |