File size: 7,365 Bytes
8b95db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb9bc88
8b95db4
 
 
 
a52aae3
8b95db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a52aae3
8b95db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import gradio as gr
import requests
import json
import logging
import google.generativeai as genai
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# API Keys configuration
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

if not all([COHERE_API_KEY, MISTRAL_API_KEY, GEMINI_API_KEY]):
    raise ValueError("Missing required API keys in environment variables")

# Configure Gemini
genai.configure(api_key=GEMINI_API_KEY)

# API endpoints configuration
COHERE_API_URL = "https://api.cohere.ai/v1/chat"
MISTRAL_API_URL = "https://api.mistral.ai/v1/chat/completions"
VECTOR_API_URL = "https://sendthat.cc"
HISTORY_INDEX = "onramps"

# Model configurations
MODELS = {
    "Cohere": {
        "name": "command-r-plus-08-2024",
        "api_url": COHERE_API_URL,
        "api_key": COHERE_API_KEY
    },
    "Mistral": {
        "name": "ft:open-mistral-nemo:ef730d29:20241022:2a0e7d46",
        "api_url": MISTRAL_API_URL,
        "api_key": MISTRAL_API_KEY
    },
    "Gemini": {
        "name": "gemini-1.5-pro",
        "model": genai.GenerativeModel('gemini-1.5-pro'),
        "api_key": GEMINI_API_KEY
    }
}

def search_document(query, k):
    try:
        url = f"{VECTOR_API_URL}/search/{HISTORY_INDEX}"
        payload = {"text": query, "k": k}
        headers = {"Content-Type": "application/json"}
        response = requests.post(url, json=payload, headers=headers)
        response.raise_for_status()
        return response.json(), "", k
    except requests.exceptions.RequestException as e:
        logging.error(f"Error in search: {e}")
        return {"error": str(e)}, query, k

def generate_answer_cohere(question, context, citations):
    headers = {
        "Authorization": f"Bearer {MODELS['Cohere']['api_key']}",
        "Content-Type": "application/json"
    }
    
    prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer the question based on the given context. Include citations as [1], [2], etc.:"
    
    payload = {
        "message": prompt,
        "model": MODELS['Cohere']['name'],
        "preamble": "You are an AI-assistant chatbot. Provide thorough responses with citations.",
        "chat_history": []
    }
    
    try:
        response = requests.post(MODELS['Cohere']['api_url'], headers=headers, json=payload)
        response.raise_for_status()
        answer = response.json()['text']
        
        answer += "\n\nSources:"
        for i, citation in enumerate(citations, 1):
            answer += f"\n[{i}] {citation}"
        
        return answer
    except requests.exceptions.RequestException as e:
        logging.error(f"Error in generate_answer_cohere: {e}")
        return f"An error occurred: {str(e)}"

def generate_answer_mistral(question, context, citations):
    headers = {
        "Authorization": f"Bearer {MODELS['Mistral']['api_key']}",
        "Content-Type": "application/json",
        "Accept": "application/json"
    }
    
    prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer the question based on the given context and any pre-trained knowledge. Include citations as [1], [2], etc.:"
    
    payload = {
        "model": MODELS['Mistral']['name'],
        "messages": [
            {
                "role": "user",
                "content": prompt
            }
        ]
    }
    
    try:
        response = requests.post(MODELS['Mistral']['api_url'], headers=headers, json=payload)
        response.raise_for_status()
        answer = response.json()['choices'][0]['message']['content']
        
        answer += "\n\nSources:"
        for i, citation in enumerate(citations, 1):
            answer += f"\n[{i}] {citation}"
        
        return answer
    except requests.exceptions.RequestException as e:
        logging.error(f"Error in generate_answer_mistral: {e}")
        return f"An error occurred: {str(e)}"

def generate_answer_gemini(question, context, citations):
    prompt = f"Context: {context}\n\nQuestion: {question}\n\nAnswer the question based on the given context. Include citations as [1], [2], etc.:"
    
    try:
        model = MODELS['Gemini']['model']
        response = model.generate_content(
            prompt,
            generation_config=genai.types.GenerationConfig(
                temperature=1.0,
                top_k=40,
                top_p=0.95,
                max_output_tokens=8192,
            )
        )
        
        answer = response.text
        
        answer += "\n\nSources:"
        for i, citation in enumerate(citations, 1):
            answer += f"\n[{i}] {citation}"
        
        return answer
    except Exception as e:
        logging.error(f"Error in generate_answer_gemini: {e}")
        return f"An error occurred: {str(e)}"

def answer_question(question, model_choice, k=3):
    # Search the vector database
    search_results, _, _ = search_document(question, k)
    
    # Extract and combine the retrieved contexts
    if "results" in search_results:
        contexts = []
        citations = []
        for item in search_results['results']:
            contexts.append(item['metadata']['content'])
            citations.append(f"{item['metadata'].get('title', 'Unknown Source')} - {item['metadata'].get('source', 'No source provided')}")
        combined_context = " ".join(contexts)
    else:
        logging.error(f"Error in database search or no results found: {search_results}")
        combined_context = ""
        citations = []
    
    # Generate answer using the selected model
    if model_choice == "Cohere":
        return generate_answer_cohere(question, combined_context, citations)
    elif model_choice == "Mistral":
        return generate_answer_mistral(question, combined_context, citations)
    else:
        return generate_answer_gemini(question, combined_context, citations)

def chatbot(message, history, model_choice):
    response = answer_question(message, model_choice)
    return response

# Example questions with default model choice
EXAMPLE_QUESTIONS = [
    ["Why was Anne Hutchinson banished from Massachusetts?", "Cohere"],
    ["What were the major causes of World War I?", "Mistral"],
    ["Who was the first President of the United States?", "Gemini"],
    ["What was the significance of the Industrial Revolution?", "Cohere"]
]

# Create Gradio interface
with gr.Blocks(theme="soft") as iface:
    gr.Markdown("# History Chatbot")
    gr.Markdown("Ask me anything about history, and I'll provide answers with citations!")
    
    with gr.Row():
        model_choice = gr.Radio(
            choices=["Cohere", "Mistral", "Gemini"],
            value="Cohere",
            label="Choose LLM Model",
            info="Select which AI model to use for generating responses"
        )
    
    chatbot_interface = gr.ChatInterface(
        fn=lambda message, history, model: chatbot(message, history, model),
        additional_inputs=[model_choice],
        chatbot=gr.Chatbot(height=300),
        textbox=gr.Textbox(placeholder="Ask a question about history...", container=False, scale=7),
        examples=EXAMPLE_QUESTIONS,
        cache_examples=False,
        retry_btn=None,
        undo_btn="Delete Previous",
        clear_btn="Clear",
    )

# Launch the app
if __name__ == "__main__":
    iface.launch()