File size: 2,202 Bytes
aad58a2
 
 
 
192371d
 
aad58a2
192371d
aad58a2
 
 
dabe6f0
 
 
 
192371d
4723a07
192371d
 
 
 
 
 
 
 
aad58a2
192371d
aad58a2
 
192371d
aad58a2
ba1ca3f
aad58a2
 
23c61db
192371d
 
 
 
 
 
aad58a2
192371d
 
62193ce
03e0ef4
aad58a2
192371d
03e0ef4
 
4723a07
192371d
 
aad58a2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import os
from openai import OpenAI

# Initialize the OpenAI Client with your API key and endpoint
api_key = os.environ.get("RUNPOD_API_KEY")  # Ensure your API key is correctly loaded from environment variables
client = OpenAI(
    api_key=api_key,
    base_url="https://api.runpod.ai/v2/vllm-k0g4c60zor9xuu/openai/v1",
)

def predict(message, history=None):
    # Ensure history is initialized as an empty list if it's None
    if history is None:
        history = []
    # Append the system role at the start if history is empty
    if not history:
        history.append(("system", "You are a history assistant, that provides the best possible answers to any historical questions asked about American History. Be helpful and specific, providing any detailed nuance needed to have a full understanding of the question."))
    
    # Prepare messages in the format required by OpenAI
    history_openai_format = []
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human})
        history_openai_format.append({"role": "assistant", "content": assistant})
    history_openai_format.append({"role": "user", "content": message})

    # Make the API call
    response_stream = client.chat.completions.create(
        model="ambrosfitz/llama-3-history",
        messages=history_openai_format,
        temperature=0,
        max_tokens=150,
        stream=True,
    )

    # Accumulate response chunks to form the full message
    full_message = ""
    for chunk in response_stream:
        if chunk.choices[0].delta.content is not None:
            full_message += chunk.choices[0].delta.content
            yield full_message

    # Update history with the latest exchange
    history.append((message, full_message))

# Set up the Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=[gr.Textbox(label="Type your question here..."), gr.State()],
    outputs=[gr.Textbox(), gr.State()],
    title="HistoryBot Chat",
    description="Interact with HistoryBot, a specialized assistant for American History. Ask any historical questions to get detailed and nuanced answers.",
    allow_flagging="never"
)

iface.launch()