Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
import torch | |
from PIL import Image, ImageDraw | |
# Load the model and processor | |
processor = AutoImageProcessor.from_pretrained("0llheaven/CON-DETR-V5") | |
model = AutoModelForObjectDetection.from_pretrained("0llheaven/CON-DETR-V5") | |
def detect_objects(image, score_threshold): | |
# Convert image to RGB if it's grayscale | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# Prepare input for the model | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
# Filter predictions based on the user-defined score threshold | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes) | |
labels_output = [] | |
no_detection = True | |
# Draw bounding boxes around detected objects | |
draw = ImageDraw.Draw(image) | |
for result in results: | |
scores = result["scores"] | |
labels = result["labels"] | |
boxes = result["boxes"] | |
for score, label, box in zip(scores, labels, boxes): | |
if score >= score_threshold: # Only draw if score is above threshold | |
no_detection = False | |
box = [round(i, 2) for i in box.tolist()] | |
#label_name = "Pneumonia" if label.item() == 0 else "Other" | |
if label.item() == 0: | |
label_name = "Pneumonia" | |
elif label.item() == 1: | |
label_name = "Normal" | |
elif label.item() == 2: | |
label_name = "Pneumonia_bacteria" | |
else: | |
label_name = "Pneumonia_virus" | |
draw.rectangle(box, outline="red", width=3) | |
draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red") | |
labels_output.append(f"{label_name}: {round(score.item(), 3)}") | |
# If no detections, set label as 'Other' | |
if no_detection: | |
labels_output.append("Other") | |
return image, "\n".join(labels_output) | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=detect_objects, | |
inputs=[gr.Image(type="pil"), gr.Slider(0, 1, value=0.5, label="Score Threshold")], # Add slider for score threshold | |
# outputs=gr.Image(type="pil"), # Corrected output type | |
outputs=[gr.Image(type="pil"), gr.Textbox(label="Detected Objects")], | |
title="Object Detection with Transformers", | |
description="Upload an image to detect objects using a fine-tuned Conditional-DETR model." | |
) | |
# Launch the interface | |
interface.launch() |