0llheaven commited on
Commit
5e73f80
·
verified ·
1 Parent(s): ca01a23

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -12
app.py CHANGED
@@ -2,26 +2,25 @@ import gradio as gr
2
  from transformers import AutoImageProcessor, AutoModelForObjectDetection
3
  import torch
4
  from PIL import Image, ImageDraw
5
- import io
6
 
7
- # โหลดโมเดลและตัวประมวลผล
8
  processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned")
9
  model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned")
10
 
11
  def detect_objects(image):
12
- # แปลงรูปภาพเป็น RGB หากเป็น grayscale
13
  if image.mode != "RGB":
14
  image = image.convert("RGB")
15
 
16
- # เตรียม input สำหรับโมเดล
17
  inputs = processor(images=image, return_tensors="pt")
18
  outputs = model(**inputs)
19
 
20
- # กรองการทำนายที่มีความแม่นยำมากกว่า 0.5
21
  target_sizes = torch.tensor([image.size[::-1]])
22
  results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
23
 
24
- # วาดกรอบรอบวัตถุที่ตรวจพบในภาพ
25
  draw = ImageDraw.Draw(image)
26
  for result in results:
27
  scores = result["scores"]
@@ -34,18 +33,16 @@ def detect_objects(image):
34
  draw.rectangle(box, outline="red", width=3)
35
  draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
36
 
37
- # แปลงภาพกลับเป็นรูปแบบที่ Gradio สามารถแสดงได้
38
- pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
39
- return pil_imag
40
 
41
- # สร้างอินเตอร์เฟซด้วย Gradio
42
  interface = gr.Interface(
43
  fn=detect_objects,
44
  inputs=gr.Image(type="pil"),
45
- outputs=gr.Image(type="auto"),
46
  title="Object Detection with Transformers",
47
  description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
48
  )
49
 
50
- # เปิดใช้งานอินเตอร์เฟซ
51
  interface.launch()
 
2
  from transformers import AutoImageProcessor, AutoModelForObjectDetection
3
  import torch
4
  from PIL import Image, ImageDraw
 
5
 
6
+ # Load the model and processor
7
  processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned")
8
  model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned")
9
 
10
  def detect_objects(image):
11
+ # Convert image to RGB if it's grayscale
12
  if image.mode != "RGB":
13
  image = image.convert("RGB")
14
 
15
+ # Prepare input for the model
16
  inputs = processor(images=image, return_tensors="pt")
17
  outputs = model(**inputs)
18
 
19
+ # Filter predictions with confidence greater than 0.5
20
  target_sizes = torch.tensor([image.size[::-1]])
21
  results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
22
 
23
+ # Draw bounding boxes around detected objects
24
  draw = ImageDraw.Draw(image)
25
  for result in results:
26
  scores = result["scores"]
 
33
  draw.rectangle(box, outline="red", width=3)
34
  draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
35
 
36
+ return image
 
 
37
 
38
+ # Create the Gradio interface
39
  interface = gr.Interface(
40
  fn=detect_objects,
41
  inputs=gr.Image(type="pil"),
42
+ outputs=gr.Image(type="pil"), # Corrected output type
43
  title="Object Detection with Transformers",
44
  description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
45
  )
46
 
47
+ # Launch the interface
48
  interface.launch()