Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,26 +2,25 @@ import gradio as gr
|
|
2 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
3 |
import torch
|
4 |
from PIL import Image, ImageDraw
|
5 |
-
import io
|
6 |
|
7 |
-
#
|
8 |
processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
9 |
model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
10 |
|
11 |
def detect_objects(image):
|
12 |
-
#
|
13 |
if image.mode != "RGB":
|
14 |
image = image.convert("RGB")
|
15 |
|
16 |
-
#
|
17 |
inputs = processor(images=image, return_tensors="pt")
|
18 |
outputs = model(**inputs)
|
19 |
|
20 |
-
#
|
21 |
target_sizes = torch.tensor([image.size[::-1]])
|
22 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
|
23 |
|
24 |
-
#
|
25 |
draw = ImageDraw.Draw(image)
|
26 |
for result in results:
|
27 |
scores = result["scores"]
|
@@ -34,18 +33,16 @@ def detect_objects(image):
|
|
34 |
draw.rectangle(box, outline="red", width=3)
|
35 |
draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
|
36 |
|
37 |
-
|
38 |
-
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
39 |
-
return pil_imag
|
40 |
|
41 |
-
#
|
42 |
interface = gr.Interface(
|
43 |
fn=detect_objects,
|
44 |
inputs=gr.Image(type="pil"),
|
45 |
-
outputs=gr.Image(type="
|
46 |
title="Object Detection with Transformers",
|
47 |
description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
|
48 |
)
|
49 |
|
50 |
-
#
|
51 |
interface.launch()
|
|
|
2 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
3 |
import torch
|
4 |
from PIL import Image, ImageDraw
|
|
|
5 |
|
6 |
+
# Load the model and processor
|
7 |
processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
8 |
model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
9 |
|
10 |
def detect_objects(image):
|
11 |
+
# Convert image to RGB if it's grayscale
|
12 |
if image.mode != "RGB":
|
13 |
image = image.convert("RGB")
|
14 |
|
15 |
+
# Prepare input for the model
|
16 |
inputs = processor(images=image, return_tensors="pt")
|
17 |
outputs = model(**inputs)
|
18 |
|
19 |
+
# Filter predictions with confidence greater than 0.5
|
20 |
target_sizes = torch.tensor([image.size[::-1]])
|
21 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
|
22 |
|
23 |
+
# Draw bounding boxes around detected objects
|
24 |
draw = ImageDraw.Draw(image)
|
25 |
for result in results:
|
26 |
scores = result["scores"]
|
|
|
33 |
draw.rectangle(box, outline="red", width=3)
|
34 |
draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
|
35 |
|
36 |
+
return image
|
|
|
|
|
37 |
|
38 |
+
# Create the Gradio interface
|
39 |
interface = gr.Interface(
|
40 |
fn=detect_objects,
|
41 |
inputs=gr.Image(type="pil"),
|
42 |
+
outputs=gr.Image(type="pil"), # Corrected output type
|
43 |
title="Object Detection with Transformers",
|
44 |
description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
|
45 |
)
|
46 |
|
47 |
+
# Launch the interface
|
48 |
interface.launch()
|