Spaces:
Sleeping
Sleeping
init
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import io
|
7 |
+
|
8 |
+
# โหลดโมเดลและตัวประมวลผล
|
9 |
+
processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
10 |
+
model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned")
|
11 |
+
|
12 |
+
def detect_objects(image):
|
13 |
+
# แปลงรูปภาพเป็น RGB หากเป็น grayscale
|
14 |
+
if image.mode != "RGB":
|
15 |
+
image = image.convert("RGB")
|
16 |
+
|
17 |
+
# เตรียม input สำหรับโมเดล
|
18 |
+
inputs = processor(images=image, return_tensors="pt")
|
19 |
+
outputs = model(**inputs)
|
20 |
+
|
21 |
+
# กรองการทำนายที่มีความแม่นยำมากกว่า 0.5
|
22 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
23 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
|
24 |
+
|
25 |
+
# วาดกรอบรอบวัตถุที่ตรวจพบในภาพ
|
26 |
+
draw = ImageDraw.Draw(image)
|
27 |
+
for result in results:
|
28 |
+
scores = result["scores"]
|
29 |
+
labels = result["labels"]
|
30 |
+
boxes = result["boxes"]
|
31 |
+
|
32 |
+
for score, label, box in zip(scores, labels, boxes):
|
33 |
+
box = [round(i, 2) for i in box.tolist()]
|
34 |
+
label_name = "Pneumonia" if label.item() == 0 else "Other"
|
35 |
+
draw.rectangle(box, outline="red", width=3)
|
36 |
+
draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red")
|
37 |
+
|
38 |
+
# แปลงภาพเป็นรูปแบบที่สามารถแสดงผลได้ใน Gradio
|
39 |
+
output_image = io.BytesIO()
|
40 |
+
image.save(output_image, format='PNG')
|
41 |
+
output_image.seek(0)
|
42 |
+
|
43 |
+
return output_image
|
44 |
+
|
45 |
+
# สร้างอินเตอร์เฟซด้วย Gradio
|
46 |
+
interface = gr.Interface(
|
47 |
+
fn=detect_objects,
|
48 |
+
inputs=gr.inputs.Image(type="pil"),
|
49 |
+
outputs=gr.outputs.Image(type="auto"),
|
50 |
+
title="Object Detection with Transformers",
|
51 |
+
description="Upload an image to detect objects using a fine-tuned Conditional-DETR model."
|
52 |
+
)
|
53 |
+
|
54 |
+
# เปิดใช้งานอินเตอร์เฟซ
|
55 |
+
interface.launch()
|