File size: 1,890 Bytes
21795f4 e094577 4b589f5 e094577 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
from transformers import TextStreamer
from torchvision.transforms import Resize
# Define the model and processor
model_id = "0llheaven/Llama-3.2-11B-Vision-Radiology-mini"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = MllamaForConditionalGeneration.from_pretrained(
model_id,
load_in_4bit=True,
torch_dtype=torch.bfloat16,
device_map=device,
)
model.gradient_checkpointing_enable()
processor = AutoProcessor.from_pretrained(model_id)
# Function to process the image and generate the description
def generate_description(image: Image.Image, instruction: str):
image = image.convert("RGB")
# image = Resize((224, 224))(image)
# Create the message to pass to the model
instruction = "You are an expert radiographer. Describe accurately what you see in this image."
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": instruction}
]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(
image,
input_text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
# Generate the output from the model
output = model.generate(**inputs, max_new_tokens=256)
return processor.decode(output[0])
# Define Gradio interface
interface = gr.Interface(
fn=generate_description,
inputs=gr.Image(type="pil", label="Upload an Image"),
outputs=gr.Textbox(label="Generated Description"),
live=True,
title="Radiology Image Description Generator",
description="Upload an image and provide an instruction to generate a description using a vision-language model."
)
# Launch the interface
interface.launch()
|