Update app.py
Browse files
app.py
CHANGED
@@ -5,129 +5,112 @@ from PIL import Image
|
|
5 |
from datasets import load_dataset
|
6 |
from transformers import TextStreamer
|
7 |
import matplotlib.pyplot as plt
|
8 |
-
|
9 |
import gradio as gr
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
model, tokenizer = FastVisionModel.from_pretrained(
|
13 |
-
"0llheaven/Llama-3.2-11B-Vision-Radiology-mini",
|
14 |
-
load_in_4bit=True,
|
15 |
-
use_gradient_checkpointing="unsloth",
|
16 |
-
).to("cpu")
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
cached_image = None
|
23 |
-
cached_response = None
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
if cached_image is not None and torch.equal(cached_image, current_image_tensor):
|
35 |
-
# ใช้ cached_response กับ text ใหม่
|
36 |
-
return cached_response
|
37 |
|
38 |
-
|
|
|
|
|
39 |
messages = [{"role": "user", "content": [
|
40 |
{"type": "image"},
|
41 |
{"type": "text", "text": instruction}
|
42 |
]}]
|
43 |
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
44 |
|
45 |
-
# เตรียม input สำหรับโมเดล
|
46 |
inputs = tokenizer(
|
47 |
image,
|
48 |
input_text,
|
49 |
add_special_tokens=False,
|
50 |
return_tensors="pt",
|
51 |
-
).to("
|
52 |
|
53 |
-
# ใช้ TextStreamer สำหรับการพยากรณ์
|
54 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
output_ids = model.generate(
|
58 |
**inputs,
|
59 |
streamer=text_streamer,
|
60 |
-
|
61 |
-
use_cache=True,
|
62 |
-
temperature=1.5,
|
63 |
-
min_p=0.1
|
64 |
)
|
65 |
|
66 |
-
# แปลงข้อความที่สร้างเป็นผลลัพธ์
|
67 |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
68 |
|
69 |
-
cached_image = current_image_tensor # แคชภาพเป็น Tensor
|
70 |
-
cached_response = generated_text.replace("assistant", "\n\nAssistant").strip()
|
71 |
-
return cached_response
|
72 |
except Exception as e:
|
73 |
return f"Error: {str(e)}"
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
gr.Markdown("# 🩻 Radiology Image ChatBot")
|
93 |
-
gr.Markdown("Upload a radiology image and provide an instruction for the AI to describe the findings.")
|
94 |
-
gr.Markdown("Example instruction : You are an expert radiographer. Describe accurately what you see in this image.")
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
)
|
106 |
-
with gr.Column():
|
107 |
-
# แสดงประวัติ Chat
|
108 |
-
chatbot = gr.Chatbot(label="Chat History")
|
109 |
|
110 |
-
|
111 |
-
clear_btn = gr.Button("Clear")
|
112 |
-
submit_btn = gr.Button("Submit")
|
113 |
-
|
114 |
-
# การทำงานของปุ่ม Submit พร้อมล้างเฉพาะข้อความใน instruction_input
|
115 |
-
submit_btn.click(
|
116 |
-
lambda image, instruction, history: (
|
117 |
-
*chat_process(image, instruction, history),
|
118 |
-
image, # รีเซ็ตค่า image_input
|
119 |
-
""
|
120 |
-
),
|
121 |
-
inputs=[image_input, instruction_input, chatbot],
|
122 |
-
outputs=[chatbot, chatbot, image_input, instruction_input]
|
123 |
-
)
|
124 |
|
125 |
-
#
|
126 |
-
|
127 |
-
|
128 |
-
inputs=[],
|
129 |
-
outputs=
|
130 |
)
|
131 |
|
132 |
-
#
|
133 |
-
|
|
|
5 |
from datasets import load_dataset
|
6 |
from transformers import TextStreamer
|
7 |
import matplotlib.pyplot as plt
|
|
|
8 |
import gradio as gr
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
def set_seed(seed_value=42):
|
15 |
+
random.seed(seed_value)
|
16 |
+
np.random.seed(seed_value)
|
17 |
+
torch.manual_seed(seed_value)
|
18 |
+
torch.cuda.manual_seed_all(seed_value)
|
19 |
+
|
20 |
+
torch.backends.cudnn.deterministic = True
|
21 |
+
torch.backends.cudnn.benchmark = False
|
22 |
|
23 |
+
set_seed(42)
|
|
|
|
|
24 |
|
25 |
+
model, tokenizer = FastVisionModel.from_pretrained(
|
26 |
+
"0llheaven/llama-3.2-11B-Vision-Instruct-Finetune",
|
27 |
+
load_in_4bit = True,
|
28 |
+
use_gradient_checkpointing = "unsloth",
|
29 |
+
)
|
30 |
|
31 |
+
FastVisionModel.for_inference(model)
|
32 |
|
33 |
+
instruction = "You are an expert radiographer. Describe accurately what you see in this image."
|
|
|
|
|
|
|
34 |
|
35 |
+
def predict_radiology_description(image, temperature, use_top_p, top_p_value, use_min_p, min_p_value):
|
36 |
+
try:
|
37 |
+
set_seed(42)
|
38 |
messages = [{"role": "user", "content": [
|
39 |
{"type": "image"},
|
40 |
{"type": "text", "text": instruction}
|
41 |
]}]
|
42 |
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
43 |
|
|
|
44 |
inputs = tokenizer(
|
45 |
image,
|
46 |
input_text,
|
47 |
add_special_tokens=False,
|
48 |
return_tensors="pt",
|
49 |
+
).to("cuda")
|
50 |
|
|
|
51 |
text_streamer = TextStreamer(tokenizer, skip_prompt=True)
|
52 |
|
53 |
+
generate_kwargs = {
|
54 |
+
"max_new_tokens": 512,
|
55 |
+
"use_cache": True,
|
56 |
+
"temperature": temperature,
|
57 |
+
}
|
58 |
+
if use_top_p:
|
59 |
+
generate_kwargs["top_p"] = top_p_value
|
60 |
+
if use_min_p:
|
61 |
+
generate_kwargs["min_p"] = min_p_value
|
62 |
+
|
63 |
output_ids = model.generate(
|
64 |
**inputs,
|
65 |
streamer=text_streamer,
|
66 |
+
**generate_kwargs
|
|
|
|
|
|
|
67 |
)
|
68 |
|
|
|
69 |
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
70 |
+
return generated_text.replace("assistant", "\n\nassistant").strip()
|
71 |
|
|
|
|
|
|
|
72 |
except Exception as e:
|
73 |
return f"Error: {str(e)}"
|
74 |
|
75 |
+
with gr.Blocks() as interface:
|
76 |
+
gr.Markdown("<h1><center>Radiology Image Description Generator</center></h1>")
|
77 |
+
gr.Markdown("Upload a radiology image, adjust temperature and top-p, and the model will describe the findings in the image")
|
78 |
+
with gr.Row():
|
79 |
+
with gr.Column():
|
80 |
+
image_input = gr.Image(type="pil", label="Upload")
|
81 |
+
with gr.Column():
|
82 |
+
output_text = gr.Textbox(label="Generated Description")
|
83 |
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column(scale=0.5):
|
86 |
+
temperature_slider = gr.Slider(0.1, 2.0, step=0.1, value=1.0, label="temperature")
|
87 |
|
88 |
+
use_top_p_checkbox = gr.Checkbox(label="Use top-p", value=True)
|
89 |
+
top_p_slider = gr.Slider(0.1, 1.0, step=0.05, value=0.9, label="top-p")
|
90 |
|
91 |
+
use_min_p_checkbox = gr.Checkbox(label="Use min-p", value=False)
|
92 |
+
min_p_slider = gr.Slider(0.0, 1.0, step=0.05, value=0.1, label="min-p", visible=False)
|
|
|
|
|
|
|
93 |
|
94 |
+
# Update visibility of sliders
|
95 |
+
use_top_p_checkbox.change(
|
96 |
+
lambda use_top_p: gr.update(visible=use_top_p),
|
97 |
+
inputs=use_top_p_checkbox,
|
98 |
+
outputs=top_p_slider
|
99 |
+
)
|
100 |
+
use_min_p_checkbox.change(
|
101 |
+
lambda use_min_p: gr.update(visible=use_min_p),
|
102 |
+
inputs=use_min_p_checkbox,
|
103 |
+
outputs=min_p_slider
|
104 |
)
|
|
|
|
|
|
|
105 |
|
106 |
+
generate_button = gr.Button("Generate Description")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
# Link function to UI
|
109 |
+
generate_button.click(
|
110 |
+
predict_radiology_description,
|
111 |
+
inputs=[image_input, temperature_slider, use_top_p_checkbox, top_p_slider, use_min_p_checkbox, min_p_slider],
|
112 |
+
outputs=output_text
|
113 |
)
|
114 |
|
115 |
+
# Gradio
|
116 |
+
interface.launch(share=True, debug=True)
|