0x1ay commited on
Commit
35ab1c9
·
verified ·
1 Parent(s): fc39b6c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -45
app.py CHANGED
@@ -1,64 +1,115 @@
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
- message,
12
  history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  messages.append({"role": "user", "content": message})
27
 
 
28
  response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
1
+ # app.py
2
+ # suppress warnings
3
+ import warnings
4
+ warnings.filterwarnings("ignore")
5
+
6
+ # import libraries
7
+ from dotenv import load_dotenv
8
+ import os
9
  import gradio as gr
10
  from huggingface_hub import InferenceClient
11
 
12
+ # Load environment variables
13
+ load_dotenv() # Load from environment or Spaces secrets
14
+
15
+ # Get the Hugging Face API key
16
+ HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
17
+ if not HUGGINGFACE_API_KEY:
18
+ raise ValueError("HUGGINGFACE_API_KEY is not set in environment variables or Spaces secrets")
19
+
20
+ # Initialize the Hugging Face Inference Client
21
+ client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=HUGGINGFACE_API_KEY)
22
 
23
+ # Load personality context for RAG
24
+ PERSONALITY_FILE = "personality.txt" # Relative path for Spaces
25
+ try:
26
+ with open(PERSONALITY_FILE, "r") as f:
27
+ personality_context = f.read()
28
+ except FileNotFoundError:
29
+ personality_context = "Default personality: A friendly and witty chatbot with a passion for horror and gaming."
30
+ warnings.warn(f"Personality file not found at {PERSONALITY_FILE}. Using default personality.")
31
 
32
  def respond(
33
+ message: str,
34
  history: list[tuple[str, str]],
35
+ system_message: str,
36
+ max_tokens: int,
37
+ temperature: float,
38
+ top_p: float,
39
  ):
40
+ """
41
+ Generate a response using the Hugging Face Inference API with RAG to enforce
42
+ the ZombieSlayerBot personality defined in personality.txt.
43
+ """
44
+ if not message.strip():
45
+ return "Please say something, survivor! The zombies are waiting!"
46
 
47
+ # Handle greetings explicitly
48
+ message_lower = message.lower().strip()
49
+ greetings = ["hi", "hello", "hey", "good morning", "good afternoon"]
50
+ if any(greeting in message_lower for greeting in greetings):
51
+ yield "Yo, survivor! Ready to dive into the zombie-infested chaos of Raccoon City? What's up?"
52
+ return
53
 
54
+ # Combine system message with personality context
55
+ full_system_message = (
56
+ f"{system_message}\n\n"
57
+ "Follow this personality profile in all responses:\n"
58
+ f"{personality_context}\n\n"
59
+ "Use the conversation history and the user's message to generate a response that aligns with the personality."
60
+ )
61
+
62
+ # Build the conversation history
63
+ messages = [{"role": "system", "content": full_system_message}]
64
+ for user_msg, bot_msg in history:
65
+ if user_msg:
66
+ messages.append({"role": "user", "content": user_msg})
67
+ if bot_msg:
68
+ messages.append({"role": "assistant", "content": bot_msg})
69
  messages.append({"role": "user", "content": message})
70
 
71
+ # Stream response from Hugging Face Inference API
72
  response = ""
73
+ try:
74
+ for message_chunk in client.chat_completion(
75
+ messages,
76
+ max_tokens=max_tokens,
77
+ stream=True,
78
+ temperature=temperature,
79
+ top_p=top_p,
80
+ ):
81
+ token = message_chunk.choices[0].delta.content or ""
82
+ response += token
83
+ yield response
84
+ except Exception as e:
85
+ yield f"Error in the apocalypse: {str(e)}. Try again, survivor!"
86
 
87
+ # Create the Gradio interface
88
+ def create_chatbot():
89
+ with gr.Blocks(title="ZombieSlayerBot") as demo:
90
+ gr.Markdown("# 🧟‍♂️ ZombieSlayerBot")
91
+ gr.Markdown("Welcome, survivor! I'm ZombieSlayerBot, your guide through the zombie-infested world of Resident Evil. Powered by Hugging Face's Zephyr-7B-Beta. Let’s lock and load—chat with me!")
 
 
 
 
 
 
92
 
93
+ # Chat interface
94
+ chat_interface = gr.ChatInterface(
95
+ fn=respond,
96
+ chatbot=gr.Chatbot(height=400, show_label=False, container=True),
97
+ textbox=gr.Textbox(placeholder="Type your message here, survivor...", container=False, scale=4),
98
+ additional_inputs=[
99
+ gr.Textbox(value="You are ZombieSlayerBot, a witty and bold chatbot obsessed with Resident Evil.", label="System message"),
100
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
101
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
102
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
103
+ ],
104
+ submit_btn=gr.Button("Send", variant="primary"),
105
+ )
106
 
107
+ # Separate clear button
108
+ clear_btn = gr.Button("Clear Chat", variant="secondary")
109
+ clear_btn.click(lambda: None, None, chat_interface.chatbot, queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
+ return demo
112
 
113
  if __name__ == "__main__":
114
+ demo = create_chatbot()
115
+ demo.launch(debug=False) # Compatible with Spaces