0x70DA commited on
Commit
53bdaaa
·
1 Parent(s): f9f2cfb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -23
app.py CHANGED
@@ -12,7 +12,6 @@ model = pipeline("image-classification", model="0x70DA/down-syndrome-classifier"
12
  detector = dlib.get_frontal_face_detector()
13
 
14
  # Define the prediction function
15
- @st.experimental_memo
16
  def predict(image):
17
  img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Convert PIL Image to NumPy array
18
  faces = detector(img)
@@ -41,25 +40,3 @@ if uploaded_image is not None:
41
  st.write("Classification Results:")
42
  for label, score in result.items():
43
  st.write(f"{label}: {score:.4f}")
44
-
45
- # Endpoint to handle POST requests
46
- @st.experimental_memo
47
- def classify_from_post_request(image_data):
48
- image = Image.open(image_data)
49
- result = predict(image)
50
- return result
51
-
52
- # Main entry point for handling POST requests
53
- if st._is_running_with_streamlit:
54
- import streamlit as st
55
- import io
56
-
57
- st.title("Streamlit App with POST Request Support")
58
-
59
- uploaded_image = st.file_uploader("Upload an image for classification", type=["jpg", "jpeg", "png"])
60
-
61
- if uploaded_image is not None:
62
- result = classify_from_post_request(uploaded_image)
63
- st.write("Classification Results:")
64
- for label, score in result.items():
65
- st.write(f"{label}: {score:.4f}")
 
12
  detector = dlib.get_frontal_face_detector()
13
 
14
  # Define the prediction function
 
15
  def predict(image):
16
  img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) # Convert PIL Image to NumPy array
17
  faces = detector(img)
 
40
  st.write("Classification Results:")
41
  for label, score in result.items():
42
  st.write(f"{label}: {score:.4f}")