Spaces:
Runtime error
Runtime error
File size: 1,139 Bytes
7f3e850 4932cf0 7f3e850 eba2192 7f3e850 eba2192 90ad141 eba2192 36fd46e 962bbdd eba2192 4932cf0 07879c1 eba2192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import requests
import os
import gradio as gr
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = 'facebook/incoder-1B'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
print('load ok')
def completion(prompt, max_tokens, temperature, top_k, top_p):
inpt = tokenizer.encode(prompt, return_tensors="pt")
tok = len(tokenizer(prompt)['input_ids'])
out = model.generate(inpt, max_length=tok+max_tokens, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=2, repetition_penalty=2.0)
res = tokenizer.decode(out[0])
return res
demo = gr.Interface(
fn=completion,
inputs=[
gr.inputs.Textbox(lines=10,placeholder='Write some code..'),
gr.inputs.Slider(10,200,10,100,'Max Tokens',False),
gr.inputs.Slider(0,1.0,0.1,1.0,'temperature',False),
gr.inputs.Slider(0,50,1,40,'top_k',True),
gr.inputs.Slider(0,1.0,0.1,0.9,'top_p',True)
],
outputs="text",
allow_flagging=False,
)
demo.launch() |