File size: 7,085 Bytes
7b8017a
 
 
 
 
 
 
 
 
 
0008b52
7b8017a
 
 
 
 
 
029ef9b
 
7b8017a
d0e51e3
71f8501
7b8017a
 
 
 
 
0008b52
 
7b8017a
0008b52
 
 
 
 
 
 
 
 
 
 
7b8017a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2eaa7de
 
 
 
 
 
 
 
 
7b8017a
 
 
 
 
 
 
 
 
 
 
 
0008b52
7b8017a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0b6a82
7b8017a
 
 
 
 
 
0008b52
7b8017a
 
 
0008b52
7b8017a
 
 
 
029ef9b
7b8017a
029ef9b
7b8017a
 
 
 
 
 
 
 
 
 
71f8501
 
7b8017a
 
0008b52
7b8017a
 
71f8501
 
7b8017a
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
import bittensor as bt
import typing
from bittensor.extrinsics.serving import get_metadata
from dataclasses import dataclass
import requests
import wandb
import math
import os
import statistics
import time
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler

load_dotenv()

FONT = """<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 6 Leaderboard</h1>"""
IMAGE = """<a href="https://discord.gg/jqVphNsB4H" target="_blank"><img src="https://i.ibb.co/88wyVQ7/nousgirl.png" alt="nousgirl" style="margin: auto; width: 20%; border: 0;" /></a>"""
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/NousResearch/finetuning-subnet" target="_blank">Subnet 6</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that incentivizes the creation of the best open models by evaluating submissions on a constant stream of newly generated synthetic GPT-4 data. The models with the best head-to-head loss on the evaluation data receive a steady emission of TAO.</h3>"""
DETAILS = """<b>Name</b> is the 🤗 Hugging Face model name (click to go to the model card). <b>Rewards / Day</b> are the expected rewards per day for each model. <b>Last Average Loss</b> is the last loss value on the evaluation data for the model as calculated by a validator (lower is better). <b>UID</b> is the Bittensor user id of the submitter. <b>Block</b> is the Bittensor block that the model was submitted in. More stats on <a href="https://taostats.io/subnets/netuid-6/" target="_blank">taostats</a>."""
VALIDATOR_WANDB_PROJECT = os.environ["VALIDATOR_WANDB_PROJECT"]
H4_TOKEN = os.environ.get("H4_TOKEN", None)
API = HfApi(token=H4_TOKEN)
REPO_ID = "NousResearch/finetuning_subnet_leaderboard"
MAX_AVG_LOSS_POINTS = 5
METAGRAPH_RETRIES = 5
METAGRAPH_DELAY_SECS = 3

def get_subtensor_and_metagraph() -> typing.Tuple[bt.subtensor, bt.metagraph]:
    subtensor: bt.subtensor = bt.subtensor("finney")
    for i in range(0, METAGRAPH_RETRIES):
        try:
            metagraph: bt.metagraph = subtensor.metagraph(6, lite=False)
            return subtensor, metagraph
        except:
            if i == METAGRAPH_RETRIES - 1:
                raise
            time.sleep(METAGRAPH_DELAY_SECS)
    raise RuntimeError()

@dataclass
class ModelData:
    uid: int
    hotkey: str
    namespace: str
    name: str
    commit: str
    hash: str
    block: int
    incentive: float
    emission: float

    @classmethod
    def from_compressed_str(cls, uid: int, hotkey: str, cs: str, block: int, incentive: float, emission: float):
        """Returns an instance of this class from a compressed string representation"""
        tokens = cs.split(":")
        return ModelData(
            uid=uid,
            hotkey=hotkey,
            namespace=tokens[0],
            name=tokens[1],
            commit=tokens[2] if tokens[2] != "None" else None,
            hash=tokens[3] if tokens[3] != "None" else None,
            block=block,
            incentive=incentive,
            emission=emission
        )

def get_tao_price() -> float:
    for i in range(0, METAGRAPH_RETRIES):
        try:
            return float(requests.get("https://api.kucoin.com/api/v1/market/stats?symbol=TAO-USDT").json()["data"]["last"])
        except:
                if i == METAGRAPH_RETRIES - 1:
                    raise
                time.sleep(METAGRAPH_DELAY_SECS)
        raise RuntimeError()

def print_validator_weights(metagraph: bt.metagraph):
    for uid in metagraph.uids.tolist():
        if metagraph.validator_trust[uid].item() > 0:
            print(f"uid: {uid}")
            for ouid in metagraph.uids.tolist():
                if ouid == uid:
                    continue
                weight = round(metagraph.weights[uid][ouid].item(), 4)
                if weight > 0:
                    print(f"  {ouid} = {weight}")

def get_subnet_data(subtensor: bt.subtensor, metagraph: bt.metagraph) -> typing.List[ModelData]:
    result = []
    for uid in metagraph.uids.tolist():
        hotkey = metagraph.hotkeys[uid]
        metadata = get_metadata(subtensor, metagraph.netuid, hotkey)
        if not metadata:
            continue

        commitment = metadata["info"]["fields"][0]
        hex_data = commitment[list(commitment.keys())[0]][2:]
        chain_str = bytes.fromhex(hex_data).decode()
        block = metadata["block"]
        incentive = metagraph.incentive[uid].nan_to_num().item()
        emission = metagraph.emission[uid].nan_to_num().item() * 20 # convert to daily TAO

        model_data = None
        try:
            model_data = ModelData.from_compressed_str(uid, hotkey, chain_str, block, incentive, emission)    
        except:
            continue

        result.append(model_data)
    return result

def get_avg_loss(uids: typing.List[int]) -> typing.Dict[int, float]:
    api = wandb.Api()
    runs = list(api.runs(VALIDATOR_WANDB_PROJECT))
    runs.reverse()

    result = {}
    for run in runs:
        history = run.history()
        for uid in uids:
            if uid in result.keys():
                continue
            key = f"uid_data.{uid}"
            if key in history:
                data = [float(x) for x in list(history[key]) if (isinstance(x, float) and not math.isnan(x)) or isinstance(x, int) ][-MAX_AVG_LOSS_POINTS:]
                if len(data) > 0:
                    result[uid] = statistics.fmean(data)
        if len(result.keys()) == len(uids):
            break
    return result

subtensor, metagraph = get_subtensor_and_metagraph()

tao_price = get_tao_price()

leaderboard_df = get_subnet_data(subtensor, metagraph)
leaderboard_df.sort(key=lambda x: x.incentive, reverse=True)

losses = get_avg_loss([x.uid for x in leaderboard_df])

demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
    gr.HTML(FONT)
    gr.HTML(TITLE)
    gr.HTML(IMAGE)
    gr.HTML(HEADER)
    gr.HTML(DETAILS)

    value = [
        [
            f'[{c.namespace}/{c.name}](https://huggingface.co/{c.namespace}/{c.name})',
            f'${round(c.emission * tao_price, 2):,}{round(c.emission, 2):,})',
            f'{round(losses[c.uid], 4) if c.uid in losses.keys() else ""}',
            c.uid,
            c.block
        ] for c in leaderboard_df
    ]
    value = [x for x in value if x[2] != ""] # filter out anything without a loss
    leaderboard_table = gr.components.Dataframe(
        value=value,
        headers=["Name", "Rewards / Day", "Last Average Loss", "UID", "Block"],
        datatype=["markdown", "str", "number", "number", "number"],
        elem_id="leaderboard-table",
        interactive=False,
        visible=True,
    )

def restart_space():
    API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=60 * 15) # restart every 15 minutes
scheduler.start()

demo.launch()