Spaces:
Runtime error
Runtime error
File size: 1,552 Bytes
0d5c9d2 ceac432 0d5c9d2 d2b0313 6887d0a 4ce0baf 6887d0a ceac432 dc5de93 4d85bc3 dc5de93 0d5c9d2 1c6d57c 6887d0a ceac432 dc5de93 9f0dff5 425da69 9f0dff5 425da69 9f0dff5 4ce0baf ceac432 0d5c9d2 ceac432 0d5c9d2 ceac432 0d5c9d2 d4772c3 4798451 2c0c47f dc5de93 0d5c9d2 ceac432 d4772c3 612f527 dc5de93 d4772c3 4d85bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import sys
import os.path
import cv2
import numpy as np
import torch
import architecture as arch
def is_cuda():
if torch.cuda.is_available():
return True
else:
return False
model_type = sys.argv[3]
if model_type == "Anime":
model_path = "4x-AnimeSharp.pth"
else:
model_path = "4x-UniScaleV2_Sharp.pth"
img_path = sys.argv[1]
output_dir = sys.argv[2]
device = torch.device('cuda' if is_cuda() else 'cpu')
model = arch.RRDB_Net(3, 3, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv')
if is_cuda():
print("Using GPU ๐ฅถ")
model.load_state_dict(torch.load(model_path), strict=True)
else:
print("Using CPU ๐")
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
base = os.path.splitext(os.path.basename(img_path))[0]
# read image
print(img_path);
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = img * 1.0 / 255
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
img_LR = img.unsqueeze(0)
img_LR = img_LR.to(device)
print('Start upscaling...')
with torch.no_grad():
output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
output = (output * 255.0).round()
print('Finished upscaling, saving image.')
cv2.imwrite(output_dir, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 5])
|