File size: 1,655 Bytes
0d5c9d2
 
 
93c8609
0d5c9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import math
import torch
import torch.nn as nn
import ESRGAN_plus.block as B


class RRDB_Net(nn.Module):
    def __init__(self, in_nc, out_nc, nf, nb, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', \
            mode='CNA', res_scale=1, upsample_mode='upconv'):
        super(RRDB_Net, self).__init__()
        n_upscale = int(math.log(upscale, 2))
        if upscale == 3:
            n_upscale = 1

        fea_conv = B.conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None)
        rb_blocks = [B.RRDB(nf, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
            norm_type=norm_type, act_type=act_type, mode='CNA') for _ in range(nb)]
        LR_conv = B.conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode)

        if upsample_mode == 'upconv':
            upsample_block = B.upconv_blcok
        elif upsample_mode == 'pixelshuffle':
            upsample_block = B.pixelshuffle_block
        else:
            raise NotImplementedError('upsample mode [%s] is not found' % upsample_mode)
        if upscale == 3:
            upsampler = upsample_block(nf, nf, 3, act_type=act_type)
        else:
            upsampler = [upsample_block(nf, nf, act_type=act_type) for _ in range(n_upscale)]
        HR_conv0 = B.conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type)
        HR_conv1 = B.conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None)

        self.model = B.sequential(fea_conv, B.ShortcutBlock(B.sequential(*rb_blocks, LR_conv)),\
            *upsampler, HR_conv0, HR_conv1)

    def forward(self, x):
        x = self.model(x)
        return x