ESRGAN-MANGA / app.py
0x90e's picture
Test install pngquant
ec4b0ec
raw
history blame
1.79 kB
import os
import gradio as gr
import util
import run_cmd
from random import randint
from PIL import Image
is_colab = util.is_google_colab()
run_cmd("pip install pngquant")
def inference(img, size, type):
_id = randint(1, 10000)
INPUT_DIR = "/tmp/input_image" + str(_id) + "/"
OUTPUT_DIR = "/tmp/output_image" + str(_id) + "/"
img_in_path = os.path.join(INPUT_DIR, "1.jpg")
img_out_path = os.path.join(OUTPUT_DIR, "1_out.png")
run_cmd(f"rm -rf {INPUT_DIR}")
run_cmd(f"rm -rf {OUTPUT_DIR}")
run_cmd(f"mkdir {INPUT_DIR}")
run_cmd(f"mkdir {OUTPUT_DIR}")
img.save(INPUT_DIR + "1.jpg", "JPEG")
if type == "Manga":
run_cmd(f"python inference_manga_v2.py {img_in_path} {img_out_path}")
else:
run_cmd(f"python inference.py {img_in_path} {img_out_path} {type}")
img_out = Image.open(img_out_path)
if size == "x2":
img_out = img_out.resize((img_out.width // 2, img_out.height // 2), resample=Image.BICUBIC)
#img_out.save(img_out_path, optimize=True) # Add more optimizations
#img_out = Image.open(img_out_path)
# Remove input and output image
run_cmd(f"rm -f {img_in_path}")
run_cmd(f"rm -f {img_out_path}")
return [img_out]
input_image = gr.Image(type="pil", label="Input")
upscale_type = gr.Radio(["Manga", "Anime", "General"], label="Select the type of picture you want to upscale:", value="Manga")
upscale_size = gr.Radio(["x4", "x2"], label="Upscale by:", value="x4")
output_image = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
demo = gr.Interface(
inference,
inputs=[input_image, upscale_size, upscale_type],
outputs=[output_image]
)
demo.queue()
demo.launch(debug=is_colab, share=is_colab, inline=is_colab)