0x90e commited on
Commit
17cfe57
·
1 Parent(s): 3aa67c0

add image tiling from Real-ESRGAN to save memory

Browse files
Files changed (5) hide show
  1. ESRGANer.py +152 -0
  2. app.py +5 -3
  3. inference.py +13 -33
  4. inference_manga_v2.py +13 -35
  5. process_image.py +1 -5
ESRGANer.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageChops
2
+ import numpy as np
3
+ import cv2 as cv
4
+ import math
5
+ import torch
6
+ from torch.nn import functional as F
7
+
8
+ """
9
+ Borrowed and adapted from https://github.com/xinntao/Real-ESRGAN/blob/master/realesrgan/utils.py
10
+ Thank you xinntao!
11
+ """
12
+ class ESRGANer():
13
+ """A helper class for upsampling images with ESRGAN.
14
+
15
+ Args:
16
+ scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
17
+ model (nn.Module): The defined network. Default: None.
18
+ tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
19
+ input images into tiles, and then process each of them. Finally, they will be merged into one image.
20
+ 0 denotes for do not use tile. Default: 500.
21
+ tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
22
+ pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
23
+ """
24
+
25
+ def __init__(self,
26
+ scale=4,
27
+ model=None,
28
+ tile=300,
29
+ tile_pad=10,
30
+ pre_pad=10
31
+ ):
32
+ self.scale = scale
33
+ self.tile_size = tile
34
+ self.tile_pad = tile_pad
35
+ self.pre_pad = pre_pad
36
+ self.mod_scale = None
37
+
38
+ self.model = model
39
+
40
+ def pre_process(self, img):
41
+ """Pre-process, such as pre-pad and mod pad, so that the images can be divisible
42
+ """
43
+ self.img = img
44
+
45
+ # pre_pad
46
+ if self.pre_pad != 0:
47
+ self.img = F.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
48
+ # mod pad for divisible borders
49
+ if self.scale == 2:
50
+ self.mod_scale = 2
51
+ elif self.scale == 1:
52
+ self.mod_scale = 4
53
+ if self.mod_scale is not None:
54
+ self.mod_pad_h, self.mod_pad_w = 0, 0
55
+ _, _, h, w = self.img.size()
56
+ if (h % self.mod_scale != 0):
57
+ self.mod_pad_h = (self.mod_scale - h % self.mod_scale)
58
+ if (w % self.mod_scale != 0):
59
+ self.mod_pad_w = (self.mod_scale - w % self.mod_scale)
60
+ self.img = F.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), 'reflect')
61
+
62
+ def process(self):
63
+ # model inference
64
+ self.output = self.model(self.img)
65
+
66
+ def tile_process(self):
67
+ """It will first crop input images to tiles, and then process each tile.
68
+ Finally, all the processed tiles are merged into one images.
69
+
70
+ Modified from: https://github.com/ata4/esrgan-launcher
71
+ """
72
+ batch, channel, height, width = self.img.shape
73
+ output_height = height * self.scale
74
+ output_width = width * self.scale
75
+ output_shape = (batch, channel, output_height, output_width)
76
+
77
+ # start with black image
78
+ self.output = self.img.new_zeros(output_shape)
79
+ tiles_x = math.ceil(width / self.tile_size)
80
+ tiles_y = math.ceil(height / self.tile_size)
81
+
82
+ # loop over all tiles
83
+ for y in range(tiles_y):
84
+ for x in range(tiles_x):
85
+ # extract tile from input image
86
+ ofs_x = x * self.tile_size
87
+ ofs_y = y * self.tile_size
88
+ # input tile area on total image
89
+ input_start_x = ofs_x
90
+ input_end_x = min(ofs_x + self.tile_size, width)
91
+ input_start_y = ofs_y
92
+ input_end_y = min(ofs_y + self.tile_size, height)
93
+
94
+ # input tile area on total image with padding
95
+ input_start_x_pad = max(input_start_x - self.tile_pad, 0)
96
+ input_end_x_pad = min(input_end_x + self.tile_pad, width)
97
+ input_start_y_pad = max(input_start_y - self.tile_pad, 0)
98
+ input_end_y_pad = min(input_end_y + self.tile_pad, height)
99
+
100
+ # input tile dimensions
101
+ input_tile_width = input_end_x - input_start_x
102
+ input_tile_height = input_end_y - input_start_y
103
+ tile_idx = y * tiles_x + x + 1
104
+ input_tile = self.img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad]
105
+
106
+ # upscale tile
107
+ try:
108
+ with torch.no_grad():
109
+ output_tile = self.model(input_tile)
110
+ except RuntimeError as error:
111
+ print('Error', error)
112
+ print(f'Processing tile {tile_idx}/{tiles_x * tiles_y}')
113
+
114
+ # output tile area on total image
115
+ output_start_x = input_start_x * self.scale
116
+ output_end_x = input_end_x * self.scale
117
+ output_start_y = input_start_y * self.scale
118
+ output_end_y = input_end_y * self.scale
119
+
120
+ # output tile area without padding
121
+ output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
122
+ output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
123
+ output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
124
+ output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
125
+
126
+ # put tile into output image
127
+ self.output[:, :, output_start_y:output_end_y,
128
+ output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile,
129
+ output_start_x_tile:output_end_x_tile]
130
+
131
+ def post_process(self):
132
+ # remove extra pad
133
+ if self.mod_scale is not None:
134
+ _, _, h, w = self.output.size()
135
+ self.output = self.output[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale]
136
+ # remove prepad
137
+ if self.pre_pad != 0:
138
+ _, _, h, w = self.output.size()
139
+ self.output = self.output[:, :, 0:h - self.pre_pad * self.scale, 0:w - self.pre_pad * self.scale]
140
+ return self.output
141
+
142
+ @torch.no_grad()
143
+ def enhance(self, img):
144
+ self.pre_process(img)
145
+
146
+ if self.tile_size > 0:
147
+ self.tile_process()
148
+ else:
149
+ self.process()
150
+ output_img = self.post_process()
151
+
152
+ return output_img
app.py CHANGED
@@ -3,8 +3,6 @@ import util
3
  import process_image
4
  from run_cmd import run_cmd
5
 
6
- run_cmd("pip install split-image")
7
-
8
  is_colab = util.is_google_colab()
9
 
10
  css = '''
@@ -37,7 +35,11 @@ with gr.Blocks(title=title, css=css) as demo:
37
  # {title}
38
  This space uses old ESRGAN architecture to upscale images, using models made by the community.
39
 
40
- Once upscaled, click or tap the download button under the image to download it.
 
 
 
 
41
  """)
42
 
43
  with gr.Box():
 
3
  import process_image
4
  from run_cmd import run_cmd
5
 
 
 
6
  is_colab = util.is_google_colab()
7
 
8
  css = '''
 
35
  # {title}
36
  This space uses old ESRGAN architecture to upscale images, using models made by the community.
37
 
38
+ Once the photo upscaled, click or tap the **download button** under the image to download it. **The preview image is not the upscaled one**
39
+
40
+ I'll add more models after optimizing to size of the output image, right now it could be quite big.
41
+
42
+ **Colab coming soon™**
43
  """)
44
 
45
  with gr.Box():
inference.py CHANGED
@@ -4,8 +4,8 @@ import cv2
4
  import numpy as np
5
  import torch
6
  import architecture as arch
7
- from split_image import split_image
8
  from run_cmd import run_cmd
 
9
 
10
  def is_cuda():
11
  if torch.cuda.is_available():
@@ -39,37 +39,17 @@ for k, v in model.named_parameters():
39
  v.requires_grad = False
40
  model = model.to(device)
41
 
42
- base_path = os.path.dirname(img_path)
43
- image_name = os.path.basename(img_path)
 
 
 
 
44
 
45
- # Split image
46
- run_cmd(f"split-image {img_path} 7 7 --output-dir {base_path} --quiet")
47
 
48
- for root, dirs, files in os.walk(base_path, topdown=True):
49
- for x, name in enumerate(files):
50
- file_path = os.path.join(root, name)
51
-
52
- if file_path == img_path:
53
- continue
54
-
55
- # Read image
56
- img = cv2.imread(file_path, cv2.IMREAD_COLOR)
57
- img = img * 1.0 / 255
58
- img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
59
- img_LR = img.unsqueeze(0)
60
- img_LR = img_LR.to(device)
61
-
62
- print(f"Start upscaling tile {x}...")
63
- with torch.no_grad():
64
- output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
65
- output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
66
- output = (output * 255.0).round()
67
- print(f"Finished upscaling tile {x}, saving tile.")
68
- cv2.imwrite(file_path, output)
69
-
70
- # Join all tiles
71
- run_cmd(f"cd {base_path} && split-image {image_name} 7 7 -r --quiet")
72
-
73
- # Open image and save as png with the ouput name
74
- img_out = cv2.imread(img_path);
75
- cv2.imwrite(output_dir, img_out, [int(cv2.IMWRITE_PNG_COMPRESSION), 5])
 
4
  import numpy as np
5
  import torch
6
  import architecture as arch
 
7
  from run_cmd import run_cmd
8
+ from ESRGANer import ESRGANer
9
 
10
  def is_cuda():
11
  if torch.cuda.is_available():
 
39
  v.requires_grad = False
40
  model = model.to(device)
41
 
42
+ # Read image
43
+ img = cv2.imread(img_path, cv2.IMREAD_COLOR)
44
+ img = img * 1.0 / 255
45
+ img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
46
+ img_LR = img.unsqueeze(0)
47
+ img_LR = img_LR.to(device)
48
 
49
+ upsampler = ESRGANer(model=model)
50
+ output = upsampler.enhance(img_LR)
51
 
52
+ output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
53
+ output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
54
+ output = (output * 255.0).round()
55
+ cv2.imwrite(output_dir, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 5])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inference_manga_v2.py CHANGED
@@ -4,8 +4,7 @@ import cv2
4
  import numpy as np
5
  import torch
6
  import architecture as arch
7
- from split_image import split_image
8
- from run_cmd import run_cmd
9
 
10
  def is_cuda():
11
  if torch.cuda.is_available():
@@ -33,38 +32,17 @@ for k, v in model.named_parameters():
33
  v.requires_grad = False
34
  model = model.to(device)
35
 
36
- base_path = os.path.dirname(img_path)
37
- image_name = os.path.basename(img_path)
 
 
 
 
38
 
39
- # Split image
40
- run_cmd(f"split-image {img_path} 7 7 --output-dir {base_path} --quiet")
41
-
42
- for root, dirs, files in os.walk(base_path, topdown=True):
43
- for x, name in enumerate(files):
44
- file_path = os.path.join(root, name)
45
-
46
- if file_path == img_path:
47
- continue
48
-
49
- # Read image
50
- img = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)
51
- img = img * 1.0 / 255
52
- img = torch.from_numpy(img[np.newaxis, :, :]).float()
53
- img_LR = img.unsqueeze(0)
54
- img_LR = img_LR.to(device)
55
-
56
- print(f"Start upscaling tile {x}...")
57
- with torch.no_grad():
58
- output = model(img_LR).squeeze(dim=0).float().cpu().clamp_(0, 1).numpy()
59
- output = np.transpose(output, (1, 2, 0))
60
- output = (output * 255.0).round()
61
- print(f"Finished upscaling tile {x}, saving tile.")
62
- cv2.imwrite(file_path, output)
63
-
64
- # Join all tiles
65
- run_cmd(f"cd {base_path} && split-image {image_name} 7 7 -r --quiet")
66
-
67
- # Open image and save as png with the ouput name
68
- img_out = cv2.imread(img_path);
69
- cv2.imwrite(output_dir, img_out, [int(cv2.IMWRITE_PNG_COMPRESSION), 5])
70
 
 
 
 
 
 
4
  import numpy as np
5
  import torch
6
  import architecture as arch
7
+ from ESRGANer import ESRGANer
 
8
 
9
  def is_cuda():
10
  if torch.cuda.is_available():
 
32
  v.requires_grad = False
33
  model = model.to(device)
34
 
35
+ # Read image
36
+ img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
37
+ img = img * 1.0 / 255
38
+ img = torch.from_numpy(img[np.newaxis, :, :]).float()
39
+ img_LR = img.unsqueeze(0)
40
+ img_LR = img_LR.to(device)
41
 
42
+ upsampler = ESRGANer(model=model)
43
+ output = upsampler.enhance(img_LR)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ output = output.squeeze(dim=0).float().cpu().clamp_(0, 1).numpy()
46
+ output = np.transpose(output, (1, 2, 0))
47
+ output = (output * 255.0).round()
48
+ cv2.imwrite(output_dir, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 5])
process_image.py CHANGED
@@ -16,10 +16,9 @@ def inference(img, size, type):
16
  OUTPUT_DIR = os.path.join(temp_path, f"output_image{str(_id)}")
17
  img_in_path = os.path.join(INPUT_DIR, "input.jpg")
18
  img_out_path = os.path.join(OUTPUT_DIR, f"output_{size}.png")
19
- run_cmd(f"rm -rf {INPUT_DIR}")
20
- run_cmd(f"rm -rf {OUTPUT_DIR}")
21
  run_cmd(f"mkdir {INPUT_DIR}")
22
  run_cmd(f"mkdir {OUTPUT_DIR}")
 
23
  img.save(img_in_path, "PNG")
24
 
25
  if type == "Manga":
@@ -32,9 +31,6 @@ def inference(img, size, type):
32
  if size == "x2":
33
  img_out = img_out.resize((img_out.width // 2, img_out.height // 2), resample=Image.BICUBIC)
34
 
35
- #img_out.save(img_out_path, optimize=True) # Add more optimizations
36
- #img_out = Image.open(img_out_path)
37
-
38
  # Remove input and output image
39
  run_cmd(f"rm -rf {INPUT_DIR}")
40
 
 
16
  OUTPUT_DIR = os.path.join(temp_path, f"output_image{str(_id)}")
17
  img_in_path = os.path.join(INPUT_DIR, "input.jpg")
18
  img_out_path = os.path.join(OUTPUT_DIR, f"output_{size}.png")
 
 
19
  run_cmd(f"mkdir {INPUT_DIR}")
20
  run_cmd(f"mkdir {OUTPUT_DIR}")
21
+
22
  img.save(img_in_path, "PNG")
23
 
24
  if type == "Manga":
 
31
  if size == "x2":
32
  img_out = img_out.resize((img_out.width // 2, img_out.height // 2), resample=Image.BICUBIC)
33
 
 
 
 
34
  # Remove input and output image
35
  run_cmd(f"rm -rf {INPUT_DIR}")
36