import sys import os.path import cv2 import numpy as np import torch import architecture as arch def is_cuda(): if torch.cuda.is_available(): return True else: return False model_type = sys.argv[3] if model_type == "Anime": model_path = "4x-AnimeSharp.pth" else: model_path = "4x-UniScaleV2_Sharp.pth" img_path = sys.argv[1] output_dir = sys.argv[2] device = torch.device('cuda' if is_cuda() else 'cpu') model = arch.RRDB_Net(3, 3, 64, 23, gc=32, upscale=4, norm_type=None, act_type='leakyrelu', mode='CNA', res_scale=1, upsample_mode='upconv') if is_cuda(): print("Using GPU 🥶") model.load_state_dict(torch.load(model_path), strict=True) else: print("Using CPU 😒") model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')), strict=True) model.eval() for k, v in model.named_parameters(): v.requires_grad = False model = model.to(device) base = os.path.splitext(os.path.basename(img_path))[0] # read image print(img_path); img = cv2.imread(img_path, cv2.IMREAD_COLOR) img = img * 1.0 / 255 img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() img_LR = img.unsqueeze(0) img_LR = img_LR.to(device) print('Start upscaling...') with torch.no_grad(): output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy() output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) output = (output * 255.0).round() print('Finished upscaling, saving image.') cv2.imwrite(output_dir, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])