File size: 682 Bytes
88472e6 53d4151 ca0b264 88472e6 6197243 88472e6 f54a6f9 ca0b264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
from transformers import pipeline
import streamlit as st
st.title("Question Answering with XLM-RoBERTa")
# Load the question-answering pipeline with the new model
with st.spinner('Loading model...'):
qa_pipeline = pipeline("question-answering", model="IProject-10/xlm-roberta-base-finetuned-squad2")
context = st.text_area("Context", "Provide the context here...")
question = st.text_input("Question", "Ask your question here...")
if st.button("Get Answer"):
if context and question:
result = qa_pipeline(question=question, context=context)
st.write(f"Answer: {result['answer']}")
else:
st.write("Please provide both context and a question.") |