Spaces:
Configuration error
Configuration error
File size: 5,132 Bytes
a61a8c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Copyright 2022 Christopher K. Schmitt
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from sentence_transformers import SentenceTransformer
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from sklearn.metrics import silhouette_score, calinski_harabasz_score
from pathlib import Path
from bs4 import BeautifulSoup
from argparse import ArgumentParser
import matplotlib.pyplot as plt
import numpy as np
import nltk as nltk
# The list of huggingface transformers with tensorflow
# support and compatible tokenizers.
available_models = {
"bert": "sentence-transformers/multi-qa-distilbert-cos-v1",
"albert": "sentence-transformers/paraphrase-albert-small-v2",
"roberta": "sentence-transformers/all-distilroberta-v1",
}
display_titles = {
"bert": "BERT",
"albert": "ALBERT",
"roberta": "RoBERTa",
}
# Define the CLI interface for modeling our data with
# different transformer models. We want to control the
# type of the tokenizer and the transformer we use, as well
# as the input and output directories
parser = ArgumentParser()
parser.add_argument("-m", "--model", choices=available_models.keys(), required=True)
parser.add_argument("-i", "--input", required=True)
parser.add_argument("-o", "--output", required=True)
args = parser.parse_args()
input_dir = args.input
output_dir = args.output
model_name = available_models[args.model]
display_name = display_titles[args.model]
# To remove random glyphs and other noise, we
# only extract words in the nltk corpus
nltk.download("words")
words = set(nltk.corpus.words.words())
def extract_words(document):
cleaned = ""
for word in nltk.wordpunct_tokenize(document):
if word.lower() in words:
cleaned += word.lower() + " "
return cleaned
# Iterate over all of the files in the provided data
# directory. Parse each file with beautiful soup to parse
# the relevant text out of the markup.
data = Path(input_dir).iterdir()
data = map(lambda doc: doc.read_bytes(), data)
data = map(lambda doc: BeautifulSoup(doc, "html.parser"), data)
data = map(lambda doc: doc.get_text(), data)
data = filter(lambda doc: len(doc) > 0, data)
data = map(extract_words, data)
data = filter(lambda doc: len(doc) > 10, data)
data = list(data)
# Initilize transformer models and predict all of the
# document embeddings as computed by bert and friends
model = SentenceTransformer(model_name)
embeddings = model.encode(data, show_progress_bar=True)
# Fit TSNE model for embedding space. Sqush down to 2
# dimentions for visualization purposes.
tsne = TSNE(n_components=2, random_state=2, init="pca", learning_rate="auto", perplexity=40)
tsne = tsne.fit_transform(embeddings)
# Hyperparameter optimizations
silhouettes = []
outliers = []
ch = []
for eps in np.arange(0.001, 1, 0.001):
dbscan = DBSCAN(eps, metric="cosine", n_jobs=-1)
dbscan = dbscan.fit_predict(embeddings)
if len(np.unique(dbscan)) > 1:
silhouettes.append(silhouette_score(embeddings, dbscan, metric="cosine"))
ch.append(calinski_harabasz_score(embeddings, dbscan))
else:
silhouettes.append(0)
ch.append(0)
outliers.append(len(dbscan[dbscan == -1]))
for p in range(15, 51):
best = np.argmax(silhouettes)
dbscan = DBSCAN(0.001 + 0.001 * best, metric="cosine", n_jobs=-1)
dbscan = dbscan.fit_predict(embeddings)
tsne = TSNE(n_components=2, perplexity=p, learning_rate="auto", init="pca", metric="cosine")
tsne = tsne.fit_transform(embeddings)
plt.figure()
plt.scatter(tsne[dbscan != -1][:, 0], tsne[dbscan != -1][:, 1], s=0.5, c=dbscan[dbscan != -1], cmap="hsv")
plt.scatter(tsne[dbscan == -1][:, 0], tsne[dbscan == -1][:, 1], s=0.5, c="#abb8c3")
plt.title(f"{display_name} Embeddings Visualized with T-SNE (p = {p})")
plt.savefig(f"{output_dir}/tnse_{p:02}.png", format="png", dpi=600)
plt.close()
plt.figure()
plt.plot(np.arange(0.001, 1, 0.001), silhouettes, lw=0.5, color="#dc322f")
plt.legend()
plt.xlabel("Epsilon")
plt.ylabel("silhouette score")
plt.title("Optimizing Epsilon by Silhouette Score")
plt.savefig(f"silhouettes.png", format="png", dpi=600)
plt.close()
plt.figure()
plt.plot(np.arange(0.001, 1, 0.001), outliers, lw=0.5, color="#dc322f")
plt.legend()
plt.xlabel("Epsilon")
plt.ylabel("outliers")
plt.title("Optimizing Epsilon by Number of Outliers")
plt.savefig(f"outliers.png", format="png", dpi=600)
plt.close()
plt.figure()
plt.plot(np.arange(0.001, 1, 0.001), ch, lw=0.5, color="#dc322f")
plt.legend()
plt.xlabel("Epsilon")
plt.ylabel("Calinski-Harabasz score")
plt.title("Optimizing Epsilon by Calinski-Harabasz Score")
plt.savefig(f"calinski-harabasz.png", format="png", dpi=600)
plt.close() |