1aurent commited on
Commit
71baad5
·
1 Parent(s): 5fe830e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import PIL.Image
3
+ import gradio as gr
4
+ import numpy as np
5
+
6
+ from .pipeline import DDIMPipelineCustom
7
+
8
+ pipeline = DDIMPipelineCustom.from_pretrained("1aurent/ddpm-mnist-conditional")
9
+
10
+ def predict(steps, seed, value, guidance):
11
+ generator = torch.manual_seed(seed)
12
+ for i in range(1,steps):
13
+ yield pipeline(
14
+ generator=generator,
15
+ condition=torch.tensor([value]),
16
+ guidance=guidance,
17
+ num_inference_steps=steps
18
+ ).images[0]
19
+
20
+ gr.Interface(
21
+ predict,
22
+ inputs=[
23
+ gr.components.Slider(1, 100, label='Inference Steps', value=20, step=1),
24
+ gr.components.Slider(0, 2147483647, label='Seed', value=69420, step=1),
25
+ gr.components.Slider(0, 9, label='Value', value=5, step=1),
26
+ gr.components.Slider(-2.5, 2.5, label='Guidance Factor', value=1),
27
+ ],
28
+ outputs=gr.Image(shape=[28,28], type="pil", elem_id="output_image"),
29
+ css="#output_image img {width: 256px}",
30
+ title="Conditional MNIST",
31
+ description="A DDIM scheduler and UNet model trained on the MNIST dataset for conditional image generation.",
32
+ ).queue().launch()