Spaces:
Sleeping
Sleeping
from diffusers import DDPMPipeline | |
import torch | |
import PIL.Image | |
import gradio as gr | |
import random | |
import numpy as np | |
pipeline = DDPMPipeline.from_pretrained("johnowhitaker/ddpm-butterflies-32px") | |
def predict(steps, seed): | |
generator = torch.manual_seed(seed) | |
for i in range(1,steps): | |
yield pipeline(generator=generator, num_inference_steps=i)["sample"][0] | |
random_seed = random.randint(0, 2147483647) | |
gr.Interface( | |
predict, | |
inputs=[ | |
gr.inputs.Slider(1, 100, label='Inference Steps', default=5, step=1), | |
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1), | |
], | |
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"), | |
css="#output_image{width: 256px}", | |
title="Unconditional butterflies", | |
description="A DDPM scheduler and UNet model trained on a subset of the <a href=\"https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset\">Smithsonian Butterflies</a> dataset for unconditional image generation.", | |
).queue().launch() |