dalyzhou
commited on
Commit
·
32c9a94
1
Parent(s):
df77864
Add application files
Browse files- Dockerfile +16 -0
- README.md +50 -7
- app.py +1783 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -1,11 +1,54 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
-
|
8 |
-
license: mit
|
9 |
---
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Ki2API - Claude Sonnet 4 OpenAI Compatible API
|
3 |
+
emoji: 🤖
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
sdk: docker
|
7 |
+
app_port: 7860
|
|
|
8 |
---
|
9 |
|
10 |
+
# Ki2API - Claude Sonnet 4 OpenAI Compatible API
|
11 |
+
|
12 |
+
OpenAI-compatible API for Claude Sonnet 4 via AWS CodeWhisperer. This service provides streaming support, tool calls, and multiple model access through a familiar OpenAI API interface.
|
13 |
+
|
14 |
+
## Features
|
15 |
+
|
16 |
+
- 🔄 **Streaming Support**: Real-time response streaming
|
17 |
+
- 🛠️ **Tool Calls**: Function calling capabilities
|
18 |
+
- 🎯 **Multiple Models**: Support for Claude Sonnet 4 and Claude 3.5 Haiku
|
19 |
+
- 🔧 **XML Tool Parsing**: Advanced tool call parsing
|
20 |
+
- 🔄 **Auto Token Refresh**: Automatic authentication token management
|
21 |
+
- 🛡️ **Null Content Handling**: Robust message processing
|
22 |
+
- 🔍 **Tool Call Deduplication**: Prevents duplicate function calls
|
23 |
+
|
24 |
+
## API Endpoints
|
25 |
+
|
26 |
+
- `GET /v1/models` - List available models
|
27 |
+
- `POST /v1/chat/completions` - Create chat completions
|
28 |
+
- `GET /health` - Health check
|
29 |
+
- `GET /` - Service information
|
30 |
+
|
31 |
+
## Environment Variables
|
32 |
+
|
33 |
+
Required environment variables:
|
34 |
+
- `API_KEY` - Bearer token for API authentication (default: ki2api-key-2024)
|
35 |
+
- `KIRO_ACCESS_TOKEN` - Kiro access token
|
36 |
+
- `KIRO_REFRESH_TOKEN` - Kiro refresh token
|
37 |
+
|
38 |
+
## Usage
|
39 |
+
|
40 |
+
```bash
|
41 |
+
curl -X POST https://your-space-url/v1/chat/completions \n -H "Authorization: Bearer ki2api-key-2024" \n -H "Content-Type: application/json" \n -d '{
|
42 |
+
"model": "claude-sonnet-4-20250514",
|
43 |
+
"messages": [
|
44 |
+
{"role": "user", "content": "Hello!"}
|
45 |
+
]
|
46 |
+
}'
|
47 |
+
```
|
48 |
+
|
49 |
+
## Supported Models
|
50 |
+
|
51 |
+
- `claude-sonnet-4-20250514` - Claude Sonnet 4 (Latest)
|
52 |
+
- `claude-3-5-haiku-20241022` - Claude 3.5 Haiku
|
53 |
+
|
54 |
+
Built with FastAPI and optimized for Hugging Face Spaces deployment.
|
app.py
ADDED
@@ -0,0 +1,1783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
import uuid
|
5 |
+
import httpx
|
6 |
+
import re
|
7 |
+
import asyncio
|
8 |
+
import xml.etree.ElementTree as ET
|
9 |
+
import logging
|
10 |
+
import struct
|
11 |
+
import base64
|
12 |
+
import copy
|
13 |
+
from fastapi import FastAPI, HTTPException, Request, Header, Depends
|
14 |
+
from fastapi.responses import StreamingResponse
|
15 |
+
from pydantic import BaseModel, Field
|
16 |
+
from typing import List, Optional, Dict, Any, Union
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
from json_repair import repair_json
|
19 |
+
|
20 |
+
# Configure logging
|
21 |
+
# logging.basicConfig(level=logging.INFO) # for dev
|
22 |
+
logging.basicConfig(level=logging.WARNING)
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
# Load environment variables
|
26 |
+
load_dotenv()
|
27 |
+
|
28 |
+
# Initialize FastAPI app
|
29 |
+
app = FastAPI(
|
30 |
+
title="Ki2API - Claude Sonnet 4 OpenAI Compatible API",
|
31 |
+
description="OpenAI-compatible API for Claude Sonnet 4 via AWS CodeWhisperer",
|
32 |
+
version="3.0.1"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Configuration
|
36 |
+
API_KEY = os.getenv("API_KEY", "ki2api-key-2024")
|
37 |
+
KIRO_ACCESS_TOKEN = os.getenv("KIRO_ACCESS_TOKEN")
|
38 |
+
KIRO_REFRESH_TOKEN = os.getenv("KIRO_REFRESH_TOKEN")
|
39 |
+
KIRO_BASE_URL = "https://codewhisperer.us-east-1.amazonaws.com/generateAssistantResponse"
|
40 |
+
PROFILE_ARN = "arn:aws:codewhisperer:us-east-1:699475941385:profile/EHGA3GRVQMUK"
|
41 |
+
|
42 |
+
# Model mapping
|
43 |
+
MODEL_MAP = {
|
44 |
+
"claude-sonnet-4-20250514": "CLAUDE_SONNET_4_20250514_V1_0",
|
45 |
+
"claude-3-5-haiku-20241022": "CLAUDE_3_7_SONNET_20250219_V1_0",
|
46 |
+
}
|
47 |
+
DEFAULT_MODEL = "claude-sonnet-4-20250514"
|
48 |
+
|
49 |
+
# Pydantic models for OpenAI compatibility
|
50 |
+
class ImageUrl(BaseModel):
|
51 |
+
url: str
|
52 |
+
detail: Optional[str] = "auto"
|
53 |
+
|
54 |
+
class ContentPart(BaseModel):
|
55 |
+
type: str
|
56 |
+
text: Optional[str] = None
|
57 |
+
image_url: Optional[ImageUrl] = None
|
58 |
+
|
59 |
+
class ToolCall(BaseModel):
|
60 |
+
id: str
|
61 |
+
type: str = "function"
|
62 |
+
function: Dict[str, Any]
|
63 |
+
class ChatMessage(BaseModel):
|
64 |
+
role: str
|
65 |
+
content: Union[str, List[ContentPart], None]
|
66 |
+
tool_calls: Optional[List[ToolCall]] = None
|
67 |
+
tool_call_id: Optional[str] = None # 用于 tool 角色的消息
|
68 |
+
|
69 |
+
def get_content_text(self) -> str:
|
70 |
+
"""Extract text content from either string or content parts"""
|
71 |
+
# Handle None content
|
72 |
+
if self.content is None:
|
73 |
+
logger.warning(f"Message with role '{self.role}' has None content")
|
74 |
+
return ""
|
75 |
+
|
76 |
+
if isinstance(self.content, str):
|
77 |
+
return self.content
|
78 |
+
elif isinstance(self.content, list):
|
79 |
+
text_parts = []
|
80 |
+
for part in self.content:
|
81 |
+
if isinstance(part, dict):
|
82 |
+
if part.get("type") == "text" and "text" in part:
|
83 |
+
text_parts.append(part.get("text", ""))
|
84 |
+
elif part.get("type") == "tool_result" and "content" in part:
|
85 |
+
text_parts.append(part.get("content", ""))
|
86 |
+
elif hasattr(part, 'text') and part.text:
|
87 |
+
text_parts.append(part.text)
|
88 |
+
return "".join(text_parts)
|
89 |
+
else:
|
90 |
+
logger.warning(f"Unexpected content type: {type(self.content)}")
|
91 |
+
return str(self.content) if self.content else ""
|
92 |
+
|
93 |
+
class Function(BaseModel):
|
94 |
+
name: str
|
95 |
+
description: Optional[str] = None
|
96 |
+
parameters: Optional[Dict[str, Any]] = None
|
97 |
+
|
98 |
+
class Tool(BaseModel):
|
99 |
+
type: str = "function"
|
100 |
+
function: Function
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
class ChatCompletionRequest(BaseModel):
|
105 |
+
model: str
|
106 |
+
messages: List[ChatMessage]
|
107 |
+
temperature: Optional[float] = 0.7
|
108 |
+
max_tokens: Optional[int] = 4000
|
109 |
+
stream: Optional[bool] = False
|
110 |
+
top_p: Optional[float] = 1.0
|
111 |
+
frequency_penalty: Optional[float] = 0.0
|
112 |
+
presence_penalty: Optional[float] = 0.0
|
113 |
+
stop: Optional[Union[str, List[str]]] = None
|
114 |
+
user: Optional[str] = None
|
115 |
+
tools: Optional[List[Tool]] = None
|
116 |
+
tool_choice: Optional[Union[str, Dict[str, Any]]] = "auto"
|
117 |
+
|
118 |
+
class Usage(BaseModel):
|
119 |
+
prompt_tokens: int
|
120 |
+
completion_tokens: int
|
121 |
+
total_tokens: int
|
122 |
+
prompt_tokens_details: Optional[Dict[str, int]] = Field(default_factory=lambda: {"cached_tokens": 0})
|
123 |
+
completion_tokens_details: Optional[Dict[str, int]] = Field(default_factory=lambda: {"reasoning_tokens": 0})
|
124 |
+
|
125 |
+
class ResponseMessage(BaseModel):
|
126 |
+
role: str
|
127 |
+
content: Optional[str] = None
|
128 |
+
tool_calls: Optional[List[ToolCall]] = None
|
129 |
+
|
130 |
+
class Choice(BaseModel):
|
131 |
+
index: int
|
132 |
+
message: ResponseMessage
|
133 |
+
logprobs: Optional[Any] = None
|
134 |
+
finish_reason: str
|
135 |
+
|
136 |
+
class StreamChoice(BaseModel):
|
137 |
+
index: int
|
138 |
+
delta: Dict[str, Any]
|
139 |
+
logprobs: Optional[Any] = None
|
140 |
+
finish_reason: Optional[str] = None
|
141 |
+
|
142 |
+
class ChatCompletionResponse(BaseModel):
|
143 |
+
id: str = Field(default_factory=lambda: f"chatcmpl-{uuid.uuid4()}")
|
144 |
+
object: str = "chat.completion"
|
145 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
146 |
+
model: str
|
147 |
+
system_fingerprint: Optional[str] = "fp_ki2api_v3"
|
148 |
+
choices: List[Choice]
|
149 |
+
usage: Usage
|
150 |
+
|
151 |
+
class ChatCompletionStreamResponse(BaseModel):
|
152 |
+
id: str = Field(default_factory=lambda: f"chatcmpl-{uuid.uuid4()}")
|
153 |
+
object: str = "chat.completion.chunk"
|
154 |
+
created: int = Field(default_factory=lambda: int(time.time()))
|
155 |
+
model: str
|
156 |
+
system_fingerprint: Optional[str] = "fp_ki2api_v3"
|
157 |
+
choices: List[StreamChoice]
|
158 |
+
usage: Optional[Usage] = None
|
159 |
+
|
160 |
+
class ErrorResponse(BaseModel):
|
161 |
+
error: Dict[str, Any]
|
162 |
+
|
163 |
+
# Authentication
|
164 |
+
async def verify_api_key(authorization: str = Header(None)):
|
165 |
+
if not authorization:
|
166 |
+
raise HTTPException(
|
167 |
+
status_code=401,
|
168 |
+
detail={
|
169 |
+
"error": {
|
170 |
+
"message": "You didn't provide an API key.",
|
171 |
+
"type": "invalid_request_error",
|
172 |
+
"param": None,
|
173 |
+
"code": "invalid_api_key"
|
174 |
+
}
|
175 |
+
}
|
176 |
+
)
|
177 |
+
|
178 |
+
if not authorization.startswith("Bearer "):
|
179 |
+
raise HTTPException(
|
180 |
+
status_code=401,
|
181 |
+
detail={
|
182 |
+
"error": {
|
183 |
+
"message": "Invalid API key format. Expected 'Bearer <key>'",
|
184 |
+
"type": "invalid_request_error",
|
185 |
+
"param": None,
|
186 |
+
"code": "invalid_api_key"
|
187 |
+
}
|
188 |
+
}
|
189 |
+
)
|
190 |
+
|
191 |
+
api_key = authorization.replace("Bearer ", "")
|
192 |
+
if api_key != API_KEY:
|
193 |
+
raise HTTPException(
|
194 |
+
status_code=401,
|
195 |
+
detail={
|
196 |
+
"error": {
|
197 |
+
"message": "Invalid API key provided",
|
198 |
+
"type": "invalid_request_error",
|
199 |
+
"param": None,
|
200 |
+
"code": "invalid_api_key"
|
201 |
+
}
|
202 |
+
}
|
203 |
+
)
|
204 |
+
return api_key
|
205 |
+
|
206 |
+
# Token management
|
207 |
+
class TokenManager:
|
208 |
+
def __init__(self):
|
209 |
+
self.access_token = KIRO_ACCESS_TOKEN
|
210 |
+
self.refresh_token = KIRO_REFRESH_TOKEN
|
211 |
+
self.refresh_url = "https://prod.us-east-1.auth.desktop.kiro.dev/refreshToken"
|
212 |
+
self.last_refresh_time = 0
|
213 |
+
self.refresh_lock = asyncio.Lock()
|
214 |
+
|
215 |
+
async def refresh_tokens(self):
|
216 |
+
"""刷新token,使用锁防止并发刷新请求"""
|
217 |
+
if not self.refresh_token:
|
218 |
+
logger.error("没有刷新token,无法刷新访问token")
|
219 |
+
return None
|
220 |
+
|
221 |
+
async with self.refresh_lock:
|
222 |
+
# 检查是否在短时间内已经刷新过
|
223 |
+
current_time = time.time()
|
224 |
+
if current_time - self.last_refresh_time < 5:
|
225 |
+
logger.info("最近已刷新token,使用现有token")
|
226 |
+
return self.access_token
|
227 |
+
|
228 |
+
try:
|
229 |
+
logger.info("开始刷新token...")
|
230 |
+
async with httpx.AsyncClient() as client:
|
231 |
+
response = await client.post(
|
232 |
+
self.refresh_url,
|
233 |
+
json={"refreshToken": self.refresh_token},
|
234 |
+
timeout=30
|
235 |
+
)
|
236 |
+
response.raise_for_status()
|
237 |
+
|
238 |
+
data = response.json()
|
239 |
+
if "accessToken" not in data:
|
240 |
+
logger.error(f"刷新token响应中没有accessToken: {data}")
|
241 |
+
return None
|
242 |
+
|
243 |
+
self.access_token = data.get("accessToken")
|
244 |
+
self.last_refresh_time = current_time
|
245 |
+
logger.info("token刷新成功")
|
246 |
+
|
247 |
+
# 更新环境变量
|
248 |
+
os.environ["KIRO_ACCESS_TOKEN"] = self.access_token
|
249 |
+
|
250 |
+
return self.access_token
|
251 |
+
except Exception as e:
|
252 |
+
logger.error(f"token刷新失败: {str(e)}")
|
253 |
+
return None
|
254 |
+
|
255 |
+
def get_token(self):
|
256 |
+
return self.access_token
|
257 |
+
|
258 |
+
token_manager = TokenManager()
|
259 |
+
|
260 |
+
# XML Tool Call Parser (from version 1)
|
261 |
+
def parse_xml_tool_calls(response_text: str) -> Optional[List[ToolCall]]:
|
262 |
+
"""解析CodeWhisperer返回的XML格式工具调用,转换为OpenAI格式"""
|
263 |
+
if not response_text:
|
264 |
+
return None
|
265 |
+
|
266 |
+
tool_calls = []
|
267 |
+
|
268 |
+
logger.info(f"🔍 开始解析XML工具调用,响应文本长度: {len(response_text)}")
|
269 |
+
|
270 |
+
# 方法1: 解析 <tool_use> 标签格式
|
271 |
+
tool_use_pattern = r'<tool_use>\s*<tool_name>([^<]+)</tool_name>\s*<tool_parameter_name>([^<]+)</tool_parameter_name>\s*<tool_parameter_value>([^<]*)</tool_parameter_value>\s*</tool_use>'
|
272 |
+
matches = re.finditer(tool_use_pattern, response_text, re.DOTALL | re.IGNORECASE)
|
273 |
+
|
274 |
+
for match in matches:
|
275 |
+
function_name = match.group(1).strip()
|
276 |
+
param_name = match.group(2).strip()
|
277 |
+
param_value = match.group(3).strip()
|
278 |
+
|
279 |
+
arguments = {param_name: param_value}
|
280 |
+
tool_call_id = f"call_{uuid.uuid4().hex[:8]}"
|
281 |
+
|
282 |
+
tool_call = ToolCall(
|
283 |
+
id=tool_call_id,
|
284 |
+
type="function",
|
285 |
+
function={
|
286 |
+
"name": function_name,
|
287 |
+
"arguments": json.dumps(arguments, ensure_ascii=False)
|
288 |
+
}
|
289 |
+
)
|
290 |
+
tool_calls.append(tool_call)
|
291 |
+
logger.info(f"✅ 解析到工具调用: {function_name} with {param_name}={param_value}")
|
292 |
+
|
293 |
+
# 方法2: 解析简单的 <tool_name> 格式
|
294 |
+
if not tool_calls:
|
295 |
+
simple_pattern = r'<tool_name>([^<]+)</tool_name>\s*<tool_parameter_name>([^<]+)</tool_parameter_name>\s*<tool_parameter_value>([^<]*)</tool_parameter_value>'
|
296 |
+
matches = re.finditer(simple_pattern, response_text, re.DOTALL | re.IGNORECASE)
|
297 |
+
|
298 |
+
for match in matches:
|
299 |
+
function_name = match.group(1).strip()
|
300 |
+
param_name = match.group(2).strip()
|
301 |
+
param_value = match.group(3).strip()
|
302 |
+
|
303 |
+
arguments = {param_name: param_value}
|
304 |
+
tool_call_id = f"call_{uuid.uuid4().hex[:8]}"
|
305 |
+
|
306 |
+
tool_call = ToolCall(
|
307 |
+
id=tool_call_id,
|
308 |
+
type="function",
|
309 |
+
function={
|
310 |
+
"name": function_name,
|
311 |
+
"arguments": json.dumps(arguments, ensure_ascii=False)
|
312 |
+
}
|
313 |
+
)
|
314 |
+
tool_calls.append(tool_call)
|
315 |
+
logger.info(f"✅ 解析到简单工具调用: {function_name} with {param_name}={param_value}")
|
316 |
+
|
317 |
+
# 方法3: 解析只有工具名的情况
|
318 |
+
if not tool_calls:
|
319 |
+
name_only_pattern = r'<tool_name>([^<]+)</tool_name>'
|
320 |
+
matches = re.finditer(name_only_pattern, response_text, re.IGNORECASE)
|
321 |
+
|
322 |
+
for match in matches:
|
323 |
+
function_name = match.group(1).strip()
|
324 |
+
tool_call_id = f"call_{uuid.uuid4().hex[:8]}"
|
325 |
+
|
326 |
+
tool_call = ToolCall(
|
327 |
+
id=tool_call_id,
|
328 |
+
type="function",
|
329 |
+
function={
|
330 |
+
"name": function_name,
|
331 |
+
"arguments": "{}"
|
332 |
+
}
|
333 |
+
)
|
334 |
+
tool_calls.append(tool_call)
|
335 |
+
logger.info(f"✅ 解析到无参数工具调用: {function_name}")
|
336 |
+
|
337 |
+
if tool_calls:
|
338 |
+
logger.info(f"🎉 总共解析出 {len(tool_calls)} 个工具调用")
|
339 |
+
return tool_calls
|
340 |
+
else:
|
341 |
+
logger.info("❌ 未发现任何XML格式的工具调用")
|
342 |
+
return None
|
343 |
+
|
344 |
+
def find_matching_bracket(text: str, start_pos: int) -> int:
|
345 |
+
"""找到匹配的结束括号位置"""
|
346 |
+
logger.info(f"🔧 FIND BRACKET: text length={len(text)}, start_pos={start_pos}")
|
347 |
+
logger.info(f"🔧 FIND BRACKET: First 100 chars: >>>{text[:100]}<<<")
|
348 |
+
|
349 |
+
if not text or start_pos >= len(text) or text[start_pos] != '[':
|
350 |
+
logger.info(f"🔧 FIND BRACKET: Early return -1, text[start_pos]={text[start_pos] if start_pos < len(text) else 'OOB'}")
|
351 |
+
return -1
|
352 |
+
|
353 |
+
bracket_count = 1
|
354 |
+
in_string = False
|
355 |
+
escape_next = False
|
356 |
+
|
357 |
+
logger.info(f"🔧 FIND BRACKET: Starting search from position {start_pos + 1}")
|
358 |
+
|
359 |
+
for i in range(start_pos + 1, len(text)):
|
360 |
+
char = text[i]
|
361 |
+
|
362 |
+
if escape_next:
|
363 |
+
escape_next = False
|
364 |
+
continue
|
365 |
+
|
366 |
+
if char == '\\' and in_string:
|
367 |
+
escape_next = True
|
368 |
+
continue
|
369 |
+
|
370 |
+
if char == '"' and not escape_next:
|
371 |
+
in_string = not in_string
|
372 |
+
logger.info(f"🔧 FIND BRACKET: Toggle string mode at {i}, in_string={in_string}")
|
373 |
+
continue
|
374 |
+
|
375 |
+
if not in_string:
|
376 |
+
if char == '[':
|
377 |
+
bracket_count += 1
|
378 |
+
logger.info(f"🔧 FIND BRACKET: [ at {i}, bracket_count={bracket_count}")
|
379 |
+
elif char == ']':
|
380 |
+
bracket_count -= 1
|
381 |
+
logger.info(f"🔧 FIND BRACKET: ] at {i}, bracket_count={bracket_count}")
|
382 |
+
if bracket_count == 0: # 只检查方括号匹配,不管花括号
|
383 |
+
logger.info(f"🔧 FIND BRACKET: Found matching ] at position {i}")
|
384 |
+
logger.info(f"🔧 FIND BRACKET: Complete match: >>>{text[start_pos:i+1]}<<<")
|
385 |
+
return i
|
386 |
+
|
387 |
+
logger.info(f"🔧 FIND BRACKET: No matching bracket found, returning -1")
|
388 |
+
logger.info(f"🔧 FIND BRACKET: Final bracket_count={bracket_count}")
|
389 |
+
return -1
|
390 |
+
|
391 |
+
def parse_single_tool_call_professional(tool_call_text: str) -> Optional[ToolCall]:
|
392 |
+
"""专业的工具调用解析器 - 使用json_repair库"""
|
393 |
+
logger.info(f"🔧 开始解析工具调用文本 (长度: {len(tool_call_text)})")
|
394 |
+
|
395 |
+
# 步骤1: 提取函数名
|
396 |
+
name_pattern = r'\[Called\s+(\w+)\s+with\s+args:'
|
397 |
+
name_match = re.search(name_pattern, tool_call_text, re.IGNORECASE)
|
398 |
+
|
399 |
+
if not name_match:
|
400 |
+
logger.warning("⚠️ 无法从文本中提取函数名")
|
401 |
+
return None
|
402 |
+
|
403 |
+
function_name = name_match.group(1).strip()
|
404 |
+
logger.info(f"✅ 提取到函数名: {function_name}")
|
405 |
+
|
406 |
+
# 步骤2: 提取JSON参数部分
|
407 |
+
# 找到 "with args:" 之后的位置
|
408 |
+
args_start_marker = "with args:"
|
409 |
+
args_start_pos = tool_call_text.lower().find(args_start_marker.lower())
|
410 |
+
if args_start_pos == -1:
|
411 |
+
logger.error("❌ 找不到 'with args:' 标记")
|
412 |
+
return None
|
413 |
+
|
414 |
+
# 从 "with args:" 后开始
|
415 |
+
args_start = args_start_pos + len(args_start_marker)
|
416 |
+
|
417 |
+
# 找到最后的 ']'
|
418 |
+
args_end = tool_call_text.rfind(']')
|
419 |
+
if args_end <= args_start:
|
420 |
+
logger.error("❌ 找不到结束的 ']'")
|
421 |
+
return None
|
422 |
+
|
423 |
+
# 提取可能包含JSON的部分
|
424 |
+
json_candidate = tool_call_text[args_start:args_end].strip()
|
425 |
+
logger.info(f"📝 提取的JSON候选文本长度: {len(json_candidate)}")
|
426 |
+
|
427 |
+
# 步骤3: 修复并解析JSON
|
428 |
+
try:
|
429 |
+
# 使用json_repair修复可能损坏的JSON
|
430 |
+
repaired_json = repair_json(json_candidate)
|
431 |
+
logger.info(f"🔧 JSON修复完成,修复后长度: {len(repaired_json)}")
|
432 |
+
|
433 |
+
# 解析修复后的JSON
|
434 |
+
arguments = json.loads(repaired_json)
|
435 |
+
|
436 |
+
# 验证解析结果是字典
|
437 |
+
if not isinstance(arguments, dict):
|
438 |
+
logger.error(f"❌ 解析结果不是字典类型: {type(arguments)}")
|
439 |
+
return None
|
440 |
+
|
441 |
+
# 创建工具调用对象
|
442 |
+
tool_call_id = f"call_{uuid.uuid4().hex[:8]}"
|
443 |
+
tool_call = ToolCall(
|
444 |
+
id=tool_call_id,
|
445 |
+
type="function",
|
446 |
+
function={
|
447 |
+
"name": function_name,
|
448 |
+
"arguments": json.dumps(arguments, ensure_ascii=False)
|
449 |
+
}
|
450 |
+
)
|
451 |
+
|
452 |
+
logger.info(f"✅ 成功创建工具调用: {function_name} (参数键: {list(arguments.keys())})")
|
453 |
+
return tool_call
|
454 |
+
|
455 |
+
except Exception as e:
|
456 |
+
logger.error(f"❌ JSON修复/解析失败: {type(e).__name__}: {str(e)}")
|
457 |
+
|
458 |
+
# 备用方案:尝试更激进的修复
|
459 |
+
try:
|
460 |
+
# 查找第一个 { 和最后一个 }
|
461 |
+
first_brace = json_candidate.find('{')
|
462 |
+
last_brace = json_candidate.rfind('}')
|
463 |
+
|
464 |
+
if first_brace != -1 and last_brace > first_brace:
|
465 |
+
core_json = json_candidate[first_brace:last_brace + 1]
|
466 |
+
|
467 |
+
# 再次尝试修复
|
468 |
+
repaired_core = repair_json(core_json)
|
469 |
+
arguments = json.loads(repaired_core)
|
470 |
+
|
471 |
+
if isinstance(arguments, dict):
|
472 |
+
tool_call_id = f"call_{uuid.uuid4().hex[:8]}"
|
473 |
+
tool_call = ToolCall(
|
474 |
+
id=tool_call_id,
|
475 |
+
type="function",
|
476 |
+
function={
|
477 |
+
"name": function_name,
|
478 |
+
"arguments": json.dumps(arguments, ensure_ascii=False)
|
479 |
+
}
|
480 |
+
)
|
481 |
+
logger.info(f"✅ 备用方案成功: {function_name}")
|
482 |
+
return tool_call
|
483 |
+
|
484 |
+
except Exception as backup_error:
|
485 |
+
logger.error(f"❌ 备用方案也失败了: {backup_error}")
|
486 |
+
|
487 |
+
return None
|
488 |
+
|
489 |
+
def parse_bracket_tool_calls_professional(response_text: str) -> Optional[List[ToolCall]]:
|
490 |
+
"""专业的批量工具调用解析器"""
|
491 |
+
if not response_text or "[Called" not in response_text:
|
492 |
+
logger.info("📭 响应文本中没有工具调用标记")
|
493 |
+
return None
|
494 |
+
|
495 |
+
tool_calls = []
|
496 |
+
errors = []
|
497 |
+
|
498 |
+
# 方法1: 使用改进的分割方法
|
499 |
+
try:
|
500 |
+
# 找到所有 [Called 的位置
|
501 |
+
call_positions = []
|
502 |
+
start = 0
|
503 |
+
while True:
|
504 |
+
pos = response_text.find("[Called", start)
|
505 |
+
if pos == -1:
|
506 |
+
break
|
507 |
+
call_positions.append(pos)
|
508 |
+
start = pos + 1
|
509 |
+
|
510 |
+
logger.info(f"🔍 找到 {len(call_positions)} 个潜在的工具调用")
|
511 |
+
|
512 |
+
for i, start_pos in enumerate(call_positions):
|
513 |
+
# 确定这个工具调用的结束位置
|
514 |
+
# 可能是下一个 [Called 的位置,或者文本结束
|
515 |
+
if i + 1 < len(call_positions):
|
516 |
+
end_search_limit = call_positions[i + 1]
|
517 |
+
else:
|
518 |
+
end_search_limit = len(response_text)
|
519 |
+
|
520 |
+
# 在限定范围内查找结束的 ]
|
521 |
+
segment = response_text[start_pos:end_search_limit]
|
522 |
+
|
523 |
+
# 查找匹配的结束括号
|
524 |
+
bracket_count = 0
|
525 |
+
end_pos = -1
|
526 |
+
|
527 |
+
for j, char in enumerate(segment):
|
528 |
+
if char == '[':
|
529 |
+
bracket_count += 1
|
530 |
+
elif char == ']':
|
531 |
+
bracket_count -= 1
|
532 |
+
if bracket_count == 0:
|
533 |
+
end_pos = start_pos + j
|
534 |
+
break
|
535 |
+
|
536 |
+
if end_pos == -1:
|
537 |
+
# 如果没找到匹配的括号,尝试找最后一个 ]
|
538 |
+
last_bracket = segment.rfind(']')
|
539 |
+
if last_bracket != -1:
|
540 |
+
end_pos = start_pos + last_bracket
|
541 |
+
else:
|
542 |
+
logger.warning(f"⚠️ 工具调用 {i+1} 没有找到结束括号")
|
543 |
+
continue
|
544 |
+
|
545 |
+
# 提取工具调用文本
|
546 |
+
tool_call_text = response_text[start_pos:end_pos + 1]
|
547 |
+
logger.info(f"📋 提取工具调用 {i+1}, 长度: {len(tool_call_text)}")
|
548 |
+
|
549 |
+
# 解析单个工具调用
|
550 |
+
parsed_call = parse_single_tool_call_professional(tool_call_text)
|
551 |
+
if parsed_call:
|
552 |
+
tool_calls.append(parsed_call)
|
553 |
+
else:
|
554 |
+
errors.append(f"工具调用 {i+1} 解析失败")
|
555 |
+
|
556 |
+
except Exception as e:
|
557 |
+
logger.error(f"❌ 批量解析过程出错: {type(e).__name__}: {str(e)}")
|
558 |
+
import traceback
|
559 |
+
traceback.print_exc()
|
560 |
+
|
561 |
+
# 记录结果
|
562 |
+
if tool_calls:
|
563 |
+
logger.info(f"🎉 成功解析 {len(tool_calls)} 个工具调用")
|
564 |
+
for tc in tool_calls:
|
565 |
+
logger.info(f" ✓ {tc.function['name']} (ID: {tc.id})")
|
566 |
+
|
567 |
+
if errors:
|
568 |
+
logger.warning(f"⚠️ 有 {len(errors)} 个解析失败:")
|
569 |
+
for error in errors:
|
570 |
+
logger.warning(f" ✗ {error}")
|
571 |
+
|
572 |
+
return tool_calls if tool_calls else None
|
573 |
+
|
574 |
+
# 为了确保兼容性,也更新原来的函数名
|
575 |
+
def parse_bracket_tool_calls(response_text: str) -> Optional[List[ToolCall]]:
|
576 |
+
"""向后兼容的函数名"""
|
577 |
+
return parse_bracket_tool_calls_professional(response_text)
|
578 |
+
|
579 |
+
def parse_single_tool_call(tool_call_text: str) -> Optional[ToolCall]:
|
580 |
+
"""向后兼容的函数名"""
|
581 |
+
return parse_single_tool_call_professional(tool_call_text)
|
582 |
+
|
583 |
+
# Add deduplication function
|
584 |
+
def deduplicate_tool_calls(tool_calls: List[Union[Dict, ToolCall]]) -> List[ToolCall]:
|
585 |
+
"""Deduplicate tool calls based on function name and arguments"""
|
586 |
+
seen = set()
|
587 |
+
unique_tool_calls = []
|
588 |
+
|
589 |
+
for tool_call in tool_calls:
|
590 |
+
# Convert to ToolCall if it's a dict
|
591 |
+
if isinstance(tool_call, dict):
|
592 |
+
tc = ToolCall(
|
593 |
+
id=tool_call.get("id", f"call_{uuid.uuid4().hex[:8]}"),
|
594 |
+
type=tool_call.get("type", "function"),
|
595 |
+
function=tool_call.get("function", {})
|
596 |
+
)
|
597 |
+
else:
|
598 |
+
tc = tool_call
|
599 |
+
|
600 |
+
# Create unique key based on function name and arguments
|
601 |
+
key = (
|
602 |
+
tc.function.get("name", ""),
|
603 |
+
tc.function.get("arguments", "")
|
604 |
+
)
|
605 |
+
|
606 |
+
if key not in seen:
|
607 |
+
seen.add(key)
|
608 |
+
unique_tool_calls.append(tc)
|
609 |
+
else:
|
610 |
+
logger.info(f"🔄 Skipping duplicate tool call: {tc.function.get('name', 'unknown')}")
|
611 |
+
|
612 |
+
return unique_tool_calls
|
613 |
+
|
614 |
+
def build_codewhisperer_request(request: ChatCompletionRequest):
|
615 |
+
codewhisperer_model = MODEL_MAP.get(request.model, MODEL_MAP[DEFAULT_MODEL])
|
616 |
+
conversation_id = str(uuid.uuid4())
|
617 |
+
|
618 |
+
# Extract system prompt and user messages
|
619 |
+
system_prompt = ""
|
620 |
+
conversation_messages = []
|
621 |
+
|
622 |
+
for msg in request.messages:
|
623 |
+
if msg.role == "system":
|
624 |
+
system_prompt = msg.get_content_text()
|
625 |
+
elif msg.role in ["user", "assistant", "tool"]:
|
626 |
+
conversation_messages.append(msg)
|
627 |
+
|
628 |
+
if not conversation_messages:
|
629 |
+
raise HTTPException(
|
630 |
+
status_code=400,
|
631 |
+
detail={
|
632 |
+
"error": {
|
633 |
+
"message": "No conversation messages found",
|
634 |
+
"type": "invalid_request_error",
|
635 |
+
"param": "messages",
|
636 |
+
"code": "invalid_request"
|
637 |
+
}
|
638 |
+
}
|
639 |
+
)
|
640 |
+
|
641 |
+
# Build history - only include user/assistant pairs
|
642 |
+
history = []
|
643 |
+
|
644 |
+
# Process history messages (all except the last one)
|
645 |
+
if len(conversation_messages) > 1:
|
646 |
+
history_messages = conversation_messages[:-1]
|
647 |
+
|
648 |
+
# Build user messages list (combining tool results with user messages)
|
649 |
+
processed_messages = []
|
650 |
+
i = 0
|
651 |
+
while i < len(history_messages):
|
652 |
+
msg = history_messages[i]
|
653 |
+
|
654 |
+
if msg.role == "user":
|
655 |
+
content = msg.get_content_text() or "Continue"
|
656 |
+
processed_messages.append(("user", content))
|
657 |
+
i += 1
|
658 |
+
elif msg.role == "assistant":
|
659 |
+
# Check if this assistant message contains tool calls
|
660 |
+
if hasattr(msg, 'tool_calls') and msg.tool_calls:
|
661 |
+
# Build a description of the tool calls
|
662 |
+
tool_descriptions = []
|
663 |
+
for tc in msg.tool_calls:
|
664 |
+
func_name = tc.function.get("name", "unknown") if isinstance(tc.function, dict) else "unknown"
|
665 |
+
args = tc.function.get("arguments", "{}") if isinstance(tc.function, dict) else "{}"
|
666 |
+
tool_descriptions.append(f"[Called {func_name} with args: {args}]")
|
667 |
+
content = " ".join(tool_descriptions)
|
668 |
+
logger.info(f"📌 Processing assistant message with tool calls: {content}")
|
669 |
+
else:
|
670 |
+
content = msg.get_content_text() or "I understand."
|
671 |
+
processed_messages.append(("assistant", content))
|
672 |
+
i += 1
|
673 |
+
elif msg.role == "tool":
|
674 |
+
# Combine tool results into the next user message
|
675 |
+
tool_content = msg.get_content_text() or "[Tool executed]"
|
676 |
+
tool_call_id = getattr(msg, 'tool_call_id', 'unknown')
|
677 |
+
|
678 |
+
# Format tool result with ID for tracking
|
679 |
+
formatted_tool_result = f"[Tool result for {tool_call_id}]: {tool_content}"
|
680 |
+
|
681 |
+
# Look ahead to see if there's a user message
|
682 |
+
if i + 1 < len(history_messages) and history_messages[i + 1].role == "user":
|
683 |
+
user_content = history_messages[i + 1].get_content_text() or ""
|
684 |
+
combined_content = f"{formatted_tool_result}\n{user_content}".strip()
|
685 |
+
processed_messages.append(("user", combined_content))
|
686 |
+
i += 2
|
687 |
+
else:
|
688 |
+
# Tool result without following user message - add as user message
|
689 |
+
processed_messages.append(("user", formatted_tool_result))
|
690 |
+
i += 1
|
691 |
+
else:
|
692 |
+
i += 1
|
693 |
+
|
694 |
+
# Build history pairs
|
695 |
+
i = 0
|
696 |
+
while i < len(processed_messages):
|
697 |
+
role, content = processed_messages[i]
|
698 |
+
|
699 |
+
if role == "user":
|
700 |
+
history.append({
|
701 |
+
"userInputMessage": {
|
702 |
+
"content": content,
|
703 |
+
"modelId": codewhisperer_model,
|
704 |
+
"origin": "AI_EDITOR"
|
705 |
+
}
|
706 |
+
})
|
707 |
+
|
708 |
+
# Look for assistant response
|
709 |
+
if i + 1 < len(processed_messages) and processed_messages[i + 1][0] == "assistant":
|
710 |
+
_, assistant_content = processed_messages[i + 1]
|
711 |
+
history.append({
|
712 |
+
"assistantResponseMessage": {
|
713 |
+
"content": assistant_content
|
714 |
+
}
|
715 |
+
})
|
716 |
+
i += 2
|
717 |
+
else:
|
718 |
+
# No assistant response, add a placeholder
|
719 |
+
history.append({
|
720 |
+
"assistantResponseMessage": {
|
721 |
+
"content": "I understand."
|
722 |
+
}
|
723 |
+
})
|
724 |
+
i += 1
|
725 |
+
elif role == "assistant":
|
726 |
+
# Orphaned assistant message
|
727 |
+
history.append({
|
728 |
+
"userInputMessage": {
|
729 |
+
"content": "Continue",
|
730 |
+
"modelId": codewhisperer_model,
|
731 |
+
"origin": "AI_EDITOR"
|
732 |
+
}
|
733 |
+
})
|
734 |
+
history.append({
|
735 |
+
"assistantResponseMessage": {
|
736 |
+
"content": content
|
737 |
+
}
|
738 |
+
})
|
739 |
+
i += 1
|
740 |
+
else:
|
741 |
+
i += 1
|
742 |
+
|
743 |
+
# Build current message
|
744 |
+
current_message = conversation_messages[-1]
|
745 |
+
|
746 |
+
# Handle images in the last message
|
747 |
+
images = []
|
748 |
+
if isinstance(current_message.content, list):
|
749 |
+
for part in current_message.content:
|
750 |
+
if part.type == "image_url" and part.image_url:
|
751 |
+
try:
|
752 |
+
# 记录原始 URL 的前 50 个字符,用于调试
|
753 |
+
logger.info(f"🔍 处理图片 URL: {part.image_url.url[:50]}...")
|
754 |
+
|
755 |
+
# 检查 URL 格式是否正确
|
756 |
+
if not part.image_url.url.startswith("data:image/"):
|
757 |
+
logger.error(f"❌ 图片 URL 格式不正确,应该以 'data:image/' 开头")
|
758 |
+
continue
|
759 |
+
|
760 |
+
# Correctly parse the data URI
|
761 |
+
# format: data:image/jpeg;base64,{base64_string}
|
762 |
+
header, encoded_data = part.image_url.url.split(",", 1)
|
763 |
+
|
764 |
+
# Correctly parse the image format from the mime type
|
765 |
+
# "data:image/jpeg;base64" -> "jpeg"
|
766 |
+
# Use regex to reliably extract image format, e.g., "jpeg" from "data:image/jpeg;base64"
|
767 |
+
match = re.search(r'image/(\w+)', header)
|
768 |
+
if match:
|
769 |
+
image_format = match.group(1)
|
770 |
+
# 验证 Base64 编码是否有效
|
771 |
+
try:
|
772 |
+
base64.b64decode(encoded_data)
|
773 |
+
logger.info("✅ Base64 编码验证通过")
|
774 |
+
except Exception as e:
|
775 |
+
logger.error(f"❌ Base64 编码无效: {e}")
|
776 |
+
continue
|
777 |
+
|
778 |
+
images.append({
|
779 |
+
"format": image_format,
|
780 |
+
"source": {"bytes": encoded_data}
|
781 |
+
})
|
782 |
+
logger.info(f"🖼️ 成功处理图片,格式: {image_format}, 大小: {len(encoded_data)} 字符")
|
783 |
+
else:
|
784 |
+
logger.warning(f"⚠️ 无法从头部确定图片格式: {header}")
|
785 |
+
except Exception as e:
|
786 |
+
logger.error(f"❌ 处理图片 URL 失败: {str(e)}")
|
787 |
+
|
788 |
+
current_content = current_message.get_content_text()
|
789 |
+
|
790 |
+
# Handle different roles for current message
|
791 |
+
if current_message.role == "tool":
|
792 |
+
# For tool results, format them properly and mark as completed
|
793 |
+
tool_result = current_content or '[Tool executed]'
|
794 |
+
tool_call_id = getattr(current_message, 'tool_call_id', 'unknown')
|
795 |
+
current_content = f"[Tool execution completed for {tool_call_id}]: {tool_result}"
|
796 |
+
|
797 |
+
# Check if this tool result follows a tool call in history
|
798 |
+
if len(conversation_messages) > 1:
|
799 |
+
prev_message = conversation_messages[-2]
|
800 |
+
if prev_message.role == "assistant" and hasattr(prev_message, 'tool_calls') and prev_message.tool_calls:
|
801 |
+
# Find the corresponding tool call
|
802 |
+
for tc in prev_message.tool_calls:
|
803 |
+
if tc.id == tool_call_id:
|
804 |
+
func_name = tc.function.get("name", "unknown") if isinstance(tc.function, dict) else "unknown"
|
805 |
+
current_content = f"[Completed execution of {func_name}]: {tool_result}"
|
806 |
+
break
|
807 |
+
elif current_message.role == "assistant":
|
808 |
+
# If last message is from assistant with tool calls, format it appropriately
|
809 |
+
if hasattr(current_message, 'tool_calls') and current_message.tool_calls:
|
810 |
+
tool_descriptions = []
|
811 |
+
for tc in current_message.tool_calls:
|
812 |
+
func_name = tc.function.get("name", "unknown") if isinstance(tc.function, dict) else "unknown"
|
813 |
+
tool_descriptions.append(f"Continue after calling {func_name}")
|
814 |
+
current_content = "; ".join(tool_descriptions)
|
815 |
+
else:
|
816 |
+
current_content = "Continue the conversation"
|
817 |
+
|
818 |
+
# Ensure current message has content
|
819 |
+
if not current_content:
|
820 |
+
current_content = "Continue"
|
821 |
+
|
822 |
+
# Add system prompt to current message
|
823 |
+
if system_prompt:
|
824 |
+
current_content = f"{system_prompt}\n\n{current_content}"
|
825 |
+
|
826 |
+
# Build request
|
827 |
+
codewhisperer_request = {
|
828 |
+
"profileArn": PROFILE_ARN,
|
829 |
+
"conversationState": {
|
830 |
+
"chatTriggerType": "MANUAL",
|
831 |
+
"conversationId": conversation_id,
|
832 |
+
"currentMessage": {
|
833 |
+
"userInputMessage": {
|
834 |
+
"content": current_content,
|
835 |
+
"modelId": codewhisperer_model,
|
836 |
+
"origin": "AI_EDITOR"
|
837 |
+
}
|
838 |
+
},
|
839 |
+
"history": history
|
840 |
+
}
|
841 |
+
}
|
842 |
+
|
843 |
+
# Add context for tools
|
844 |
+
user_input_message_context = {}
|
845 |
+
if request.tools:
|
846 |
+
user_input_message_context["tools"] = [
|
847 |
+
{
|
848 |
+
"toolSpecification": {
|
849 |
+
"name": tool.function.name,
|
850 |
+
"description": tool.function.description or "",
|
851 |
+
"inputSchema": {"json": tool.function.parameters or {}}
|
852 |
+
}
|
853 |
+
} for tool in request.tools
|
854 |
+
]
|
855 |
+
|
856 |
+
# 根据文档,images 应该是 userInputMessage 的直接子字段,而不是在 userInputMessageContext 中
|
857 |
+
if images:
|
858 |
+
# 直接添加到 userInputMessage 中
|
859 |
+
codewhisperer_request["conversationState"]["currentMessage"]["userInputMessage"]["images"] = images
|
860 |
+
logger.info(f"📊 添加了 {len(images)} 个图片到 userInputMessage 中")
|
861 |
+
for i, img in enumerate(images):
|
862 |
+
logger.info(f" - 图片 {i+1}: 格式={img['format']}, 大小={len(img['source']['bytes'])} 字符")
|
863 |
+
# 记录图片数据的前20个字符,用于调试
|
864 |
+
logger.info(f" - 图片数据前20字符: {img['source']['bytes'][:20]}...")
|
865 |
+
logger.info(f"✅ 成功添加 images 到 userInputMessage 中")
|
866 |
+
|
867 |
+
if user_input_message_context:
|
868 |
+
codewhisperer_request["conversationState"]["currentMessage"]["userInputMessage"]["userInputMessageContext"] = user_input_message_context
|
869 |
+
logger.info(f"✅ 成功添加 userInputMessageContext 到请求中")
|
870 |
+
|
871 |
+
# 创建一个用于日志记录的请求副本,避免记录完整的图片数据
|
872 |
+
log_request = copy.deepcopy(codewhisperer_request)
|
873 |
+
# 检查 images 是否在 userInputMessage 中
|
874 |
+
if "images" in log_request.get("conversationState", {}).get("currentMessage", {}).get("userInputMessage", {}):
|
875 |
+
for img in log_request["conversationState"]["currentMessage"]["userInputMessage"]["images"]:
|
876 |
+
if "bytes" in img.get("source", {}):
|
877 |
+
img["source"]["bytes"] = img["source"]["bytes"][:20] + "..." # 只记录前20个字符
|
878 |
+
|
879 |
+
logger.info(f"🔄 COMPLETE CODEWHISPERER REQUEST: {json.dumps(log_request, indent=2)}")
|
880 |
+
return codewhisperer_request
|
881 |
+
# AWS Event Stream Parser (from version 2)
|
882 |
+
class CodeWhispererStreamParser:
|
883 |
+
def __init__(self):
|
884 |
+
self.buffer = b''
|
885 |
+
self.error_count = 0
|
886 |
+
self.max_errors = 5
|
887 |
+
|
888 |
+
def parse(self, chunk: bytes) -> List[Dict[str, Any]]:
|
889 |
+
"""解析AWS事件流格式的数据块"""
|
890 |
+
self.buffer += chunk
|
891 |
+
logger.debug(f"Parser received {len(chunk)} bytes. Buffer size: {len(self.buffer)}")
|
892 |
+
events = []
|
893 |
+
|
894 |
+
if len(self.buffer) < 12:
|
895 |
+
return []
|
896 |
+
|
897 |
+
while len(self.buffer) >= 12:
|
898 |
+
try:
|
899 |
+
header_bytes = self.buffer[0:8]
|
900 |
+
total_len, header_len = struct.unpack('>II', header_bytes)
|
901 |
+
|
902 |
+
# 安全检查
|
903 |
+
if total_len > 2000000 or header_len > 2000000:
|
904 |
+
logger.error(f"Unreasonable header values: total_len={total_len}, header_len={header_len}")
|
905 |
+
self.buffer = self.buffer[8:]
|
906 |
+
self.error_count += 1
|
907 |
+
if self.error_count > self.max_errors:
|
908 |
+
logger.error("Too many parsing errors, clearing buffer")
|
909 |
+
self.buffer = b''
|
910 |
+
continue
|
911 |
+
|
912 |
+
# 等待完整帧
|
913 |
+
if len(self.buffer) < total_len:
|
914 |
+
break
|
915 |
+
|
916 |
+
# 提取完整帧
|
917 |
+
frame = self.buffer[:total_len]
|
918 |
+
self.buffer = self.buffer[total_len:]
|
919 |
+
|
920 |
+
# 提取有效载荷
|
921 |
+
payload_start = 8 + header_len
|
922 |
+
payload_end = total_len - 4 # 减去尾部CRC
|
923 |
+
|
924 |
+
if payload_start >= payload_end or payload_end > len(frame):
|
925 |
+
logger.error(f"Invalid payload bounds")
|
926 |
+
continue
|
927 |
+
|
928 |
+
payload = frame[payload_start:payload_end]
|
929 |
+
|
930 |
+
# 解码有效载荷
|
931 |
+
try:
|
932 |
+
payload_str = payload.decode('utf-8', errors='ignore')
|
933 |
+
|
934 |
+
# 尝试解析JSON
|
935 |
+
json_start_index = payload_str.find('{')
|
936 |
+
if json_start_index != -1:
|
937 |
+
json_payload = payload_str[json_start_index:]
|
938 |
+
event_data = json.loads(json_payload)
|
939 |
+
events.append(event_data)
|
940 |
+
logger.debug(f"Successfully parsed event: {event_data}")
|
941 |
+
except json.JSONDecodeError as e:
|
942 |
+
logger.error(f"JSON decode error: {e}")
|
943 |
+
continue
|
944 |
+
|
945 |
+
except struct.error as e:
|
946 |
+
logger.error(f"Struct unpack error: {e}")
|
947 |
+
self.buffer = self.buffer[1:]
|
948 |
+
self.error_count += 1
|
949 |
+
if self.error_count > self.max_errors:
|
950 |
+
logger.error("Too many parsing errors, clearing buffer")
|
951 |
+
self.buffer = b''
|
952 |
+
except Exception as e:
|
953 |
+
logger.error(f"Unexpected error during parsing: {str(e)}")
|
954 |
+
self.buffer = self.buffer[1:]
|
955 |
+
self.error_count += 1
|
956 |
+
if self.error_count > self.max_errors:
|
957 |
+
logger.error("Too many parsing errors, clearing buffer")
|
958 |
+
self.buffer = b''
|
959 |
+
|
960 |
+
if events:
|
961 |
+
self.error_count = 0
|
962 |
+
|
963 |
+
return events
|
964 |
+
|
965 |
+
# Simple fallback parser for basic responses
|
966 |
+
class SimpleResponseParser:
|
967 |
+
@staticmethod
|
968 |
+
def parse_event_stream_to_json(raw_data: bytes) -> Dict[str, Any]:
|
969 |
+
"""Simple parser for fallback (from version 1)"""
|
970 |
+
try:
|
971 |
+
if isinstance(raw_data, bytes):
|
972 |
+
raw_str = raw_data.decode('utf-8', errors='ignore')
|
973 |
+
else:
|
974 |
+
raw_str = str(raw_data)
|
975 |
+
|
976 |
+
# Method 1: Look for JSON objects with content field
|
977 |
+
json_pattern = r'\{[^{}]*"content"[^{}]*\}'
|
978 |
+
matches = re.findall(json_pattern, raw_str, re.DOTALL)
|
979 |
+
|
980 |
+
if matches:
|
981 |
+
content_parts = []
|
982 |
+
for match in matches:
|
983 |
+
try:
|
984 |
+
data = json.loads(match)
|
985 |
+
if 'content' in data and data['content']:
|
986 |
+
content_parts.append(data['content'])
|
987 |
+
except json.JSONDecodeError:
|
988 |
+
continue
|
989 |
+
if content_parts:
|
990 |
+
full_content = ''.join(content_parts)
|
991 |
+
return {
|
992 |
+
"content": full_content,
|
993 |
+
"tokens": len(full_content.split())
|
994 |
+
}
|
995 |
+
|
996 |
+
# Method 2: Extract readable text
|
997 |
+
clean_text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F]', '', raw_str)
|
998 |
+
clean_text = re.sub(r':event-type[^:]*:[^:]*:[^:]*:', '', clean_text)
|
999 |
+
clean_text = re.sub(r':content-type[^:]*:[^:]*:[^:]*:', '', clean_text)
|
1000 |
+
|
1001 |
+
meaningful_text = re.sub(r'[^\w\s\u4e00-\u9fff\u3040-\u309f\u30a0-\u30ff.,!?;:()"\'-]', '', clean_text)
|
1002 |
+
meaningful_text = re.sub(r'\s+', ' ', meaningful_text).strip()
|
1003 |
+
|
1004 |
+
if meaningful_text and len(meaningful_text) > 5:
|
1005 |
+
return {
|
1006 |
+
"content": meaningful_text,
|
1007 |
+
"tokens": len(meaningful_text.split())
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
return {"content": "No readable content found", "tokens": 0}
|
1011 |
+
|
1012 |
+
except Exception as e:
|
1013 |
+
return {"content": f"Error parsing response: {str(e)}", "tokens": 0}
|
1014 |
+
|
1015 |
+
# API call to CodeWhisperer
|
1016 |
+
async def call_kiro_api(request: ChatCompletionRequest):
|
1017 |
+
"""Make API call to Kiro/CodeWhisperer with token refresh handling"""
|
1018 |
+
token = token_manager.get_token()
|
1019 |
+
if not token:
|
1020 |
+
raise HTTPException(
|
1021 |
+
status_code=401,
|
1022 |
+
detail={
|
1023 |
+
"error": {
|
1024 |
+
"message": "No access token available",
|
1025 |
+
"type": "authentication_error",
|
1026 |
+
"param": None,
|
1027 |
+
"code": "invalid_api_key"
|
1028 |
+
}
|
1029 |
+
}
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
request_data = build_codewhisperer_request(request)
|
1033 |
+
|
1034 |
+
headers = {
|
1035 |
+
"Authorization": f"Bearer {token}",
|
1036 |
+
"Content-Type": "application/json",
|
1037 |
+
"Accept": "text/event-stream" if request.stream else "application/json"
|
1038 |
+
}
|
1039 |
+
|
1040 |
+
try:
|
1041 |
+
async with httpx.AsyncClient() as client:
|
1042 |
+
response = await client.post(
|
1043 |
+
KIRO_BASE_URL,
|
1044 |
+
headers=headers,
|
1045 |
+
json=request_data,
|
1046 |
+
timeout=120
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
logger.info(f"📤 RESPONSE STATUS: {response.status_code}")
|
1050 |
+
|
1051 |
+
if response.status_code == 403:
|
1052 |
+
logger.info("收到403响应,尝试刷新token...")
|
1053 |
+
new_token = await token_manager.refresh_tokens()
|
1054 |
+
if new_token:
|
1055 |
+
headers["Authorization"] = f"Bearer {new_token}"
|
1056 |
+
response = await client.post(
|
1057 |
+
KIRO_BASE_URL,
|
1058 |
+
headers=headers,
|
1059 |
+
json=request_data,
|
1060 |
+
timeout=120
|
1061 |
+
)
|
1062 |
+
logger.info(f"📤 RETRY RESPONSE STATUS: {response.status_code}")
|
1063 |
+
else:
|
1064 |
+
raise HTTPException(status_code=401, detail="Token refresh failed")
|
1065 |
+
|
1066 |
+
if response.status_code == 429:
|
1067 |
+
raise HTTPException(
|
1068 |
+
status_code=429,
|
1069 |
+
detail={
|
1070 |
+
"error": {
|
1071 |
+
"message": "Rate limit exceeded",
|
1072 |
+
"type": "rate_limit_error",
|
1073 |
+
"param": None,
|
1074 |
+
"code": "rate_limit_exceeded"
|
1075 |
+
}
|
1076 |
+
}
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
response.raise_for_status()
|
1080 |
+
return response
|
1081 |
+
|
1082 |
+
except httpx.HTTPStatusError as e:
|
1083 |
+
logger.error(f"HTTP ERROR: {e.response.status_code} - {e.response.text}")
|
1084 |
+
raise HTTPException(
|
1085 |
+
status_code=503,
|
1086 |
+
detail={
|
1087 |
+
"error": {
|
1088 |
+
"message": f"API call failed: {str(e)}",
|
1089 |
+
"type": "api_error",
|
1090 |
+
"param": None,
|
1091 |
+
"code": "api_error"
|
1092 |
+
}
|
1093 |
+
}
|
1094 |
+
)
|
1095 |
+
except Exception as e:
|
1096 |
+
logger.error(f"API call failed: {str(e)}")
|
1097 |
+
raise HTTPException(
|
1098 |
+
status_code=503,
|
1099 |
+
detail={
|
1100 |
+
"error": {
|
1101 |
+
"message": f"API call failed: {str(e)}",
|
1102 |
+
"type": "api_error",
|
1103 |
+
"param": None,
|
1104 |
+
"code": "api_error"
|
1105 |
+
}
|
1106 |
+
}
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
# Utility functions
|
1110 |
+
def estimate_tokens(text: str) -> int:
|
1111 |
+
"""Rough token estimation"""
|
1112 |
+
return max(1, len(text) // 4)
|
1113 |
+
|
1114 |
+
def create_usage_stats(prompt_text: str, completion_text: str) -> Usage:
|
1115 |
+
"""Create usage statistics"""
|
1116 |
+
prompt_tokens = estimate_tokens(prompt_text)
|
1117 |
+
completion_tokens = estimate_tokens(completion_text)
|
1118 |
+
return Usage(
|
1119 |
+
prompt_tokens=prompt_tokens,
|
1120 |
+
completion_tokens=completion_tokens,
|
1121 |
+
total_tokens=prompt_tokens + completion_tokens
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
# API endpoints
|
1125 |
+
@app.get("/v1/models")
|
1126 |
+
async def list_models(api_key: str = Depends(verify_api_key)):
|
1127 |
+
"""List available models"""
|
1128 |
+
return {
|
1129 |
+
"object": "list",
|
1130 |
+
"data": [
|
1131 |
+
{
|
1132 |
+
"id": model_id,
|
1133 |
+
"object": "model",
|
1134 |
+
"created": int(time.time()),
|
1135 |
+
"owned_by": "ki2api"
|
1136 |
+
}
|
1137 |
+
for model_id in MODEL_MAP.keys()
|
1138 |
+
]
|
1139 |
+
}
|
1140 |
+
|
1141 |
+
@app.post("/v1/chat/completions")
|
1142 |
+
async def create_chat_completion(
|
1143 |
+
request: ChatCompletionRequest,
|
1144 |
+
api_key: str = Depends(verify_api_key)
|
1145 |
+
):
|
1146 |
+
"""Create a chat completion"""
|
1147 |
+
logger.info(f"📥 COMPLETE REQUEST: {request.model_dump_json(indent=2)}")
|
1148 |
+
|
1149 |
+
# Validate messages have content
|
1150 |
+
for i, msg in enumerate(request.messages):
|
1151 |
+
if msg.content is None and msg.role != "assistant":
|
1152 |
+
logger.warning(f"Message {i} with role '{msg.role}' has None content")
|
1153 |
+
|
1154 |
+
if request.model not in MODEL_MAP:
|
1155 |
+
raise HTTPException(
|
1156 |
+
status_code=400,
|
1157 |
+
detail={
|
1158 |
+
"error": {
|
1159 |
+
"message": f"The model '{request.model}' does not exist or you do not have access to it.",
|
1160 |
+
"type": "invalid_request_error",
|
1161 |
+
"param": "model",
|
1162 |
+
"code": "model_not_found"
|
1163 |
+
}
|
1164 |
+
}
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
# 总是使用非流式响应,但根据请求类型返回不同格式
|
1168 |
+
response = await create_non_streaming_response(request)
|
1169 |
+
|
1170 |
+
if request.stream:
|
1171 |
+
# 将非流式响应转换为流式格式
|
1172 |
+
return await convert_to_streaming_response(response)
|
1173 |
+
else:
|
1174 |
+
return response
|
1175 |
+
|
1176 |
+
|
1177 |
+
async def convert_to_streaming_response(response: ChatCompletionResponse):
|
1178 |
+
"""将非流式响应转换为流式格式返回"""
|
1179 |
+
async def generate_stream():
|
1180 |
+
# 使用原响应的ID和时间戳
|
1181 |
+
response_id = response.id
|
1182 |
+
created = response.created
|
1183 |
+
model = response.model
|
1184 |
+
|
1185 |
+
# 发送初始块 - role
|
1186 |
+
initial_chunk = ChatCompletionStreamResponse(
|
1187 |
+
id=response_id,
|
1188 |
+
model=model,
|
1189 |
+
created=created,
|
1190 |
+
choices=[StreamChoice(
|
1191 |
+
index=0,
|
1192 |
+
delta={"role": "assistant"},
|
1193 |
+
finish_reason=None
|
1194 |
+
)]
|
1195 |
+
)
|
1196 |
+
yield f"data: {initial_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1197 |
+
|
1198 |
+
# 获取响应消息
|
1199 |
+
if response.choices and len(response.choices) > 0:
|
1200 |
+
message = response.choices[0].message
|
1201 |
+
|
1202 |
+
# 如果有工具调用,发送工具调用
|
1203 |
+
if message.tool_calls:
|
1204 |
+
for i, tool_call in enumerate(message.tool_calls):
|
1205 |
+
# 发送完整的工具调用作为一个块
|
1206 |
+
tool_chunk = ChatCompletionStreamResponse(
|
1207 |
+
id=response_id,
|
1208 |
+
model=model,
|
1209 |
+
created=created,
|
1210 |
+
choices=[StreamChoice(
|
1211 |
+
index=0,
|
1212 |
+
delta={
|
1213 |
+
"tool_calls": [{
|
1214 |
+
"index": i,
|
1215 |
+
"id": tool_call.id,
|
1216 |
+
"type": tool_call.type,
|
1217 |
+
"function": tool_call.function
|
1218 |
+
}]
|
1219 |
+
},
|
1220 |
+
finish_reason=None
|
1221 |
+
)]
|
1222 |
+
)
|
1223 |
+
yield f"data: {tool_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1224 |
+
|
1225 |
+
# 如果有内容,分块发送内容
|
1226 |
+
elif message.content:
|
1227 |
+
# 将内容分成较小的块以模拟流式传输
|
1228 |
+
content = message.content
|
1229 |
+
chunk_size = 50 # 每个块的字符数
|
1230 |
+
|
1231 |
+
for i in range(0, len(content), chunk_size):
|
1232 |
+
chunk_text = content[i:i + chunk_size]
|
1233 |
+
content_chunk = ChatCompletionStreamResponse(
|
1234 |
+
id=response_id,
|
1235 |
+
model=model,
|
1236 |
+
created=created,
|
1237 |
+
choices=[StreamChoice(
|
1238 |
+
index=0,
|
1239 |
+
delta={"content": chunk_text},
|
1240 |
+
finish_reason=None
|
1241 |
+
)]
|
1242 |
+
)
|
1243 |
+
yield f"data: {content_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1244 |
+
# 添加小延迟以模拟真实的流式传输
|
1245 |
+
await asyncio.sleep(0.01)
|
1246 |
+
|
1247 |
+
# 发送结束块
|
1248 |
+
finish_reason = response.choices[0].finish_reason
|
1249 |
+
end_chunk = ChatCompletionStreamResponse(
|
1250 |
+
id=response_id,
|
1251 |
+
model=model,
|
1252 |
+
created=created,
|
1253 |
+
choices=[StreamChoice(
|
1254 |
+
index=0,
|
1255 |
+
delta={},
|
1256 |
+
finish_reason=finish_reason
|
1257 |
+
)]
|
1258 |
+
)
|
1259 |
+
yield f"data: {end_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1260 |
+
|
1261 |
+
# 发送流结束标记
|
1262 |
+
yield "data: [DONE]\n\n"
|
1263 |
+
|
1264 |
+
return StreamingResponse(
|
1265 |
+
generate_stream(),
|
1266 |
+
media_type="text/event-stream",
|
1267 |
+
headers={
|
1268 |
+
"Cache-Control": "no-cache",
|
1269 |
+
"Connection": "keep-alive",
|
1270 |
+
"Content-Type": "text/event-stream"
|
1271 |
+
}
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
async def create_non_streaming_response(request: ChatCompletionRequest):
|
1275 |
+
"""
|
1276 |
+
Handles non-streaming chat completion requests.
|
1277 |
+
It fetches the complete response from CodeWhisperer, parses it using
|
1278 |
+
CodeWhispererStreamParser, and constructs a single OpenAI-compatible
|
1279 |
+
ChatCompletionResponse. This version correctly handles tool calls by
|
1280 |
+
parsing both structured event data and bracket format in text.
|
1281 |
+
"""
|
1282 |
+
try:
|
1283 |
+
logger.info("🚀 开始非流式响应生成...")
|
1284 |
+
response = await call_kiro_api(request)
|
1285 |
+
|
1286 |
+
# 添加详细的原始响应日志
|
1287 |
+
logger.info(f"📤 CodeWhisperer响应状态码: {response.status_code}")
|
1288 |
+
logger.info(f"📤 响应头: {dict(response.headers)}")
|
1289 |
+
logger.info(f"📤 原始响应体长度: {len(response.content)} bytes")
|
1290 |
+
|
1291 |
+
# 获取原始响应文本用于工具调用检测
|
1292 |
+
raw_response_text = ""
|
1293 |
+
try:
|
1294 |
+
raw_response_text = response.content.decode('utf-8', errors='ignore')
|
1295 |
+
logger.info(f"🔍 原始响应文本长度: {len(raw_response_text)}")
|
1296 |
+
logger.info(f"🔍 原始响应预览(前1000字符): {raw_response_text[:1000]}")
|
1297 |
+
|
1298 |
+
# 检查是否包含工具调用标记
|
1299 |
+
if "[Called" in raw_response_text:
|
1300 |
+
logger.info("✅ 原始响应中发现 [Called 标记")
|
1301 |
+
called_positions = [m.start() for m in re.finditer(r'\[Called', raw_response_text)]
|
1302 |
+
logger.info(f"🎯 [Called 出现位置: {called_positions}")
|
1303 |
+
else:
|
1304 |
+
logger.info("❌ 原始响应中未发现 [Called 标记")
|
1305 |
+
|
1306 |
+
except Exception as e:
|
1307 |
+
logger.error(f"❌ 解码原始响应失败: {e}")
|
1308 |
+
|
1309 |
+
# 使用 CodeWhispererStreamParser 一次性解析整个响应体
|
1310 |
+
parser = CodeWhispererStreamParser()
|
1311 |
+
events = parser.parse(response.content)
|
1312 |
+
|
1313 |
+
full_response_text = ""
|
1314 |
+
tool_calls = []
|
1315 |
+
current_tool_call_dict = None
|
1316 |
+
|
1317 |
+
logger.info(f"🔄 解析到 {len(events)} 个事件,开始处理...")
|
1318 |
+
|
1319 |
+
# 记录每个事件的详细信息
|
1320 |
+
for i, event in enumerate(events):
|
1321 |
+
logger.info(f"📋 事件 {i}: {event}")
|
1322 |
+
|
1323 |
+
for event in events:
|
1324 |
+
# 优先处理结构化工具调用事件
|
1325 |
+
if "name" in event and "toolUseId" in event:
|
1326 |
+
logger.info(f"🔧 发现结构化工具调用事件: {event}")
|
1327 |
+
# 如果是新的工具调用,则初始化
|
1328 |
+
if not current_tool_call_dict:
|
1329 |
+
current_tool_call_dict = {
|
1330 |
+
"id": event.get("toolUseId"),
|
1331 |
+
"type": "function",
|
1332 |
+
"function": {
|
1333 |
+
"name": event.get("name"),
|
1334 |
+
"arguments": ""
|
1335 |
+
}
|
1336 |
+
}
|
1337 |
+
logger.info(f"🆕 开始解析工具调用: {current_tool_call_dict['function']['name']}")
|
1338 |
+
|
1339 |
+
# 累积参数
|
1340 |
+
if "input" in event:
|
1341 |
+
current_tool_call_dict["function"]["arguments"] += event.get("input", "")
|
1342 |
+
logger.info(f"📝 累积参数: {event.get('input', '')}")
|
1343 |
+
|
1344 |
+
# 工具调用结束
|
1345 |
+
if event.get("stop"):
|
1346 |
+
logger.info(f"✅ 完成工具调用: {current_tool_call_dict['function']['name']}")
|
1347 |
+
# 验证并标准化参数为JSON字符串
|
1348 |
+
try:
|
1349 |
+
args = json.loads(current_tool_call_dict["function"]["arguments"])
|
1350 |
+
current_tool_call_dict["function"]["arguments"] = json.dumps(args, ensure_ascii=False)
|
1351 |
+
logger.info(f"✅ 工具调用参数验证成功")
|
1352 |
+
except json.JSONDecodeError as e:
|
1353 |
+
logger.warning(f"⚠️ 工具调用的参数不是有效的JSON: {current_tool_call_dict['function']['arguments']}")
|
1354 |
+
logger.warning(f"⚠️ JSON错误: {e}")
|
1355 |
+
|
1356 |
+
tool_calls.append(ToolCall(**current_tool_call_dict))
|
1357 |
+
current_tool_call_dict = None # 重置以备下一个
|
1358 |
+
|
1359 |
+
# 处理普通文本内容事件
|
1360 |
+
elif "content" in event:
|
1361 |
+
content = event.get("content", "")
|
1362 |
+
full_response_text += content
|
1363 |
+
logger.info(f"📄 添加文本内容: {content[:100]}...")
|
1364 |
+
|
1365 |
+
# 如果流在工具调用中间意外结束,也将其添加
|
1366 |
+
if current_tool_call_dict:
|
1367 |
+
logger.warning("⚠️ 响应流在工具调用结束前终止,仍尝试添加。")
|
1368 |
+
tool_calls.append(ToolCall(**current_tool_call_dict))
|
1369 |
+
|
1370 |
+
logger.info(f"📊 事件处理完成 - 文本长度: {len(full_response_text)}, 结构化工具调用: {len(tool_calls)}")
|
1371 |
+
|
1372 |
+
# 检查解析后文本中的 bracket 格式工具调用
|
1373 |
+
logger.info("🔍 开始检查解析后文本中的bracket格式工具调用...")
|
1374 |
+
bracket_tool_calls = parse_bracket_tool_calls(full_response_text)
|
1375 |
+
if bracket_tool_calls:
|
1376 |
+
logger.info(f"✅ 在解析后文本中发现 {len(bracket_tool_calls)} 个 bracket 格式工具调用")
|
1377 |
+
tool_calls.extend(bracket_tool_calls)
|
1378 |
+
|
1379 |
+
# 从响应文本中移除工具调用文本
|
1380 |
+
for tc in bracket_tool_calls:
|
1381 |
+
# 构建精确的正则表达式来匹配这个特定的工具调用
|
1382 |
+
func_name = tc.function.get("name", "unknown")
|
1383 |
+
# 转义函数名中的特殊字符
|
1384 |
+
escaped_name = re.escape(func_name)
|
1385 |
+
# 匹配 [Called FunctionName with args: {...}]
|
1386 |
+
pattern = r'\[Called\s+' + escaped_name + r'\s+with\s+args:\s*\{[^}]*(?:\{[^}]*\}[^}]*)*\}\s*\]'
|
1387 |
+
full_response_text = re.sub(pattern, '', full_response_text, flags=re.DOTALL)
|
1388 |
+
|
1389 |
+
# 清理多余的空白
|
1390 |
+
full_response_text = re.sub(r'\s+', ' ', full_response_text).strip()
|
1391 |
+
|
1392 |
+
# 关键修复:检查原始响应中的 bracket 格式工具调用
|
1393 |
+
logger.info("🔍 开始检查原始响应中的bracket格式工具调用...")
|
1394 |
+
raw_bracket_tool_calls = parse_bracket_tool_calls(raw_response_text)
|
1395 |
+
if raw_bracket_tool_calls and isinstance(raw_bracket_tool_calls, list):
|
1396 |
+
logger.info(f"✅ 在原始响应中发现 {len(raw_bracket_tool_calls)} 个 bracket 格式工具调用")
|
1397 |
+
tool_calls.extend(raw_bracket_tool_calls)
|
1398 |
+
else:
|
1399 |
+
logger.info("❌ 原始响应中未发现bracket格式工具调用")
|
1400 |
+
|
1401 |
+
# 去重工具调用
|
1402 |
+
logger.info(f"🔄 去重前工具调用数量: {len(tool_calls)}")
|
1403 |
+
unique_tool_calls = deduplicate_tool_calls(tool_calls)
|
1404 |
+
logger.info(f"🔄 去重后工具调用数量: {len(unique_tool_calls)}")
|
1405 |
+
|
1406 |
+
# 根据是否有工具调用来构建响应
|
1407 |
+
if unique_tool_calls:
|
1408 |
+
logger.info(f"🔧 构建工具调用响应,包含 {len(unique_tool_calls)} 个工具调用")
|
1409 |
+
for i, tc in enumerate(unique_tool_calls):
|
1410 |
+
logger.info(f"🔧 工具调用 {i}: {tc.function.get('name', 'unknown')}")
|
1411 |
+
|
1412 |
+
response_message = ResponseMessage(
|
1413 |
+
role="assistant",
|
1414 |
+
content=None, # OpenAI规范:当有tool_calls时,content必须为None
|
1415 |
+
tool_calls=unique_tool_calls
|
1416 |
+
)
|
1417 |
+
finish_reason = "tool_calls"
|
1418 |
+
else:
|
1419 |
+
logger.info("📄 构建普通文本响应")
|
1420 |
+
# 如果没有工具调用,使用清理后的文本
|
1421 |
+
content = full_response_text.strip() if full_response_text.strip() else "I understand."
|
1422 |
+
logger.info(f"📄 最终文本内容: {content[:200]}...")
|
1423 |
+
|
1424 |
+
response_message = ResponseMessage(
|
1425 |
+
role="assistant",
|
1426 |
+
content=content
|
1427 |
+
)
|
1428 |
+
finish_reason = "stop"
|
1429 |
+
|
1430 |
+
choice = Choice(
|
1431 |
+
index=0,
|
1432 |
+
message=response_message,
|
1433 |
+
finish_reason=finish_reason
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
usage = create_usage_stats(
|
1437 |
+
prompt_text=" ".join([msg.get_content_text() for msg in request.messages]),
|
1438 |
+
completion_text=full_response_text if not unique_tool_calls else ""
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
chat_response = ChatCompletionResponse(
|
1442 |
+
model=request.model,
|
1443 |
+
choices=[choice],
|
1444 |
+
usage=usage
|
1445 |
+
)
|
1446 |
+
|
1447 |
+
logger.info(f"📤 最终非流式响应构建完成")
|
1448 |
+
logger.info(f"📤 响应类型: {'工具调用' if unique_tool_calls else '文本内容'}")
|
1449 |
+
logger.info(f"📤 完整响应: {chat_response.model_dump_json(indent=2, exclude_none=True)}")
|
1450 |
+
return chat_response
|
1451 |
+
|
1452 |
+
except HTTPException:
|
1453 |
+
raise
|
1454 |
+
except Exception as e:
|
1455 |
+
logger.error(f"❌ 非流式响应处理出错: {e}")
|
1456 |
+
import traceback
|
1457 |
+
traceback.print_exc()
|
1458 |
+
raise HTTPException(
|
1459 |
+
status_code=500,
|
1460 |
+
detail={
|
1461 |
+
"error": {
|
1462 |
+
"message": f"Internal server error: {str(e)}",
|
1463 |
+
"type": "internal_server_error",
|
1464 |
+
"param": None,
|
1465 |
+
"code": "internal_error"
|
1466 |
+
}
|
1467 |
+
}
|
1468 |
+
)
|
1469 |
+
|
1470 |
+
async def create_streaming_response(request: ChatCompletionRequest):
|
1471 |
+
"""
|
1472 |
+
Handles streaming chat completion requests.
|
1473 |
+
This function iteratively processes the binary event stream from CodeWhisperer,
|
1474 |
+
parsing events on the fly. It maintains state to correctly identify and
|
1475 |
+
stream text content or tool calls in the OpenAI-compatible format.
|
1476 |
+
"""
|
1477 |
+
try:
|
1478 |
+
logger.info("开始流式响应生成...")
|
1479 |
+
response = await call_kiro_api(request)
|
1480 |
+
|
1481 |
+
async def generate_stream():
|
1482 |
+
response_id = f"chatcmpl-{uuid.uuid4()}"
|
1483 |
+
created = int(time.time())
|
1484 |
+
parser = CodeWhispererStreamParser()
|
1485 |
+
|
1486 |
+
# --- 状态变量 ---
|
1487 |
+
is_in_tool_call = False
|
1488 |
+
sent_role = False
|
1489 |
+
current_tool_call_index = 0
|
1490 |
+
streamed_tool_calls_count = 0
|
1491 |
+
content_buffer = "" # 用于累积文本内容
|
1492 |
+
incomplete_tool_call = "" # 用于累积不完整的工具调用
|
1493 |
+
|
1494 |
+
async for chunk in response.aiter_bytes():
|
1495 |
+
events = parser.parse(chunk)
|
1496 |
+
|
1497 |
+
for event in events:
|
1498 |
+
# --- 处理结构化工具调用事件 ---
|
1499 |
+
if "name" in event and "toolUseId" in event:
|
1500 |
+
logger.info(f"🎯 STREAM: Found structured tool call event: {event}")
|
1501 |
+
# 开始一个新的工具调用
|
1502 |
+
if not is_in_tool_call:
|
1503 |
+
is_in_tool_call = True
|
1504 |
+
|
1505 |
+
# 发送工具调用开始的 chunk
|
1506 |
+
delta_start = {
|
1507 |
+
"tool_calls": [{
|
1508 |
+
"index": current_tool_call_index,
|
1509 |
+
"id": event.get("toolUseId"),
|
1510 |
+
"type": "function",
|
1511 |
+
"function": {"name": event.get("name"), "arguments": ""}
|
1512 |
+
}]
|
1513 |
+
}
|
1514 |
+
# 如果是第一个数据块,需要包含 role: assistant
|
1515 |
+
if not sent_role:
|
1516 |
+
delta_start["role"] = "assistant"
|
1517 |
+
sent_role = True
|
1518 |
+
|
1519 |
+
start_chunk = ChatCompletionStreamResponse(
|
1520 |
+
id=response_id, model=request.model, created=created,
|
1521 |
+
choices=[StreamChoice(index=0, delta=delta_start)]
|
1522 |
+
)
|
1523 |
+
yield f"data: {start_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1524 |
+
|
1525 |
+
# 累积工具调用的参数
|
1526 |
+
if "input" in event:
|
1527 |
+
arg_chunk_str = event.get("input", "")
|
1528 |
+
if arg_chunk_str:
|
1529 |
+
arg_chunk_delta = {
|
1530 |
+
"tool_calls": [{
|
1531 |
+
"index": current_tool_call_index,
|
1532 |
+
"function": {"arguments": arg_chunk_str}
|
1533 |
+
}]
|
1534 |
+
}
|
1535 |
+
arg_chunk_resp = ChatCompletionStreamResponse(
|
1536 |
+
id=response_id, model=request.model, created=created,
|
1537 |
+
choices=[StreamChoice(index=0, delta=arg_chunk_delta)]
|
1538 |
+
)
|
1539 |
+
yield f"data: {arg_chunk_resp.model_dump_json(exclude_none=True)}\n\n"
|
1540 |
+
|
1541 |
+
# 结束一个工具调用
|
1542 |
+
if event.get("stop"):
|
1543 |
+
is_in_tool_call = False
|
1544 |
+
current_tool_call_index += 1
|
1545 |
+
streamed_tool_calls_count += 1
|
1546 |
+
|
1547 |
+
# --- 处理普通文本内容事件 ---
|
1548 |
+
elif "content" in event and not is_in_tool_call:
|
1549 |
+
content_text = event.get("content", "")
|
1550 |
+
if content_text:
|
1551 |
+
content_buffer += content_text
|
1552 |
+
logger.info(f"📝 STREAM DEBUG: Buffer updated. Length: {len(content_buffer)}. Content: >>>{content_buffer}<<<")
|
1553 |
+
logger.info(f"📝 STREAM DEBUG: incomplete_tool_call: >>>{incomplete_tool_call}<<<")
|
1554 |
+
|
1555 |
+
# 处理bracket格式的工具调用
|
1556 |
+
while True:
|
1557 |
+
# 查找 [Called 的开始位置
|
1558 |
+
called_start = content_buffer.find("[Called")
|
1559 |
+
logger.info(f"🔍 BRACKET DEBUG: Searching for [Called in buffer (length={len(content_buffer)})")
|
1560 |
+
logger.info(f"🔍 BRACKET DEBUG: called_start={called_start}")
|
1561 |
+
logger.info(f"🔍 BRACKET DEBUG: Full buffer content: >>>{content_buffer}<<<")
|
1562 |
+
|
1563 |
+
if called_start == -1:
|
1564 |
+
# 没有工具调用,发送所有内容
|
1565 |
+
logger.info(f"🔍 BRACKET DEBUG: No [Called found, sending buffer as content")
|
1566 |
+
logger.info(f"🔍 BRACKET DEBUG: incomplete_tool_call status: {bool(incomplete_tool_call)}")
|
1567 |
+
if content_buffer and not incomplete_tool_call:
|
1568 |
+
delta_content = {"content": content_buffer}
|
1569 |
+
if not sent_role:
|
1570 |
+
delta_content["role"] = "assistant"
|
1571 |
+
sent_role = True
|
1572 |
+
|
1573 |
+
logger.info(f"📤 STREAM: Sending content chunk: {delta_content}")
|
1574 |
+
content_chunk = ChatCompletionStreamResponse(
|
1575 |
+
id=response_id, model=request.model, created=created,
|
1576 |
+
choices=[StreamChoice(index=0, delta=delta_content)]
|
1577 |
+
)
|
1578 |
+
yield f"data: {content_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1579 |
+
content_buffer = ""
|
1580 |
+
break
|
1581 |
+
|
1582 |
+
logger.info(f"🔍 BRACKET DEBUG: Found [Called at position {called_start}")
|
1583 |
+
|
1584 |
+
# 发送 [Called 之前的文本
|
1585 |
+
if called_start > 0:
|
1586 |
+
text_before = content_buffer[:called_start]
|
1587 |
+
logger.info(f"🔍 BRACKET DEBUG: Text before [Called: >>>{text_before}<<<")
|
1588 |
+
if text_before.strip():
|
1589 |
+
delta_content = {"content": text_before}
|
1590 |
+
if not sent_role:
|
1591 |
+
delta_content["role"] = "assistant"
|
1592 |
+
sent_role = True
|
1593 |
+
|
1594 |
+
content_chunk = ChatCompletionStreamResponse(
|
1595 |
+
id=response_id, model=request.model, created=created,
|
1596 |
+
choices=[StreamChoice(index=0, delta=delta_content)]
|
1597 |
+
)
|
1598 |
+
yield f"data: {content_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1599 |
+
|
1600 |
+
# 查找对应的结束 ]
|
1601 |
+
remaining_text = content_buffer[called_start:]
|
1602 |
+
logger.info(f"🔍 BRACKET DEBUG: Looking for matching ] in: >>>{remaining_text[:100]}...<<<")
|
1603 |
+
bracket_end = find_matching_bracket(remaining_text, 0)
|
1604 |
+
logger.info(f"🔍 BRACKET DEBUG: bracket_end={bracket_end}")
|
1605 |
+
|
1606 |
+
if bracket_end == -1:
|
1607 |
+
# 工具调用不完整,保留在缓冲区
|
1608 |
+
logger.info(f"🔍 BRACKET DEBUG: Tool call incomplete, saving to incomplete_tool_call")
|
1609 |
+
logger.info(f"🔍 BRACKET DEBUG: Incomplete content: >>>{remaining_text}<<<")
|
1610 |
+
incomplete_tool_call = remaining_text
|
1611 |
+
content_buffer = ""
|
1612 |
+
break
|
1613 |
+
|
1614 |
+
# 提取完整的工具调用
|
1615 |
+
tool_call_text = remaining_text[:bracket_end + 1]
|
1616 |
+
logger.info(f"🔍 BRACKET DEBUG: Extracting tool call: >>>{tool_call_text}<<<")
|
1617 |
+
parsed_call = parse_single_tool_call(tool_call_text)
|
1618 |
+
logger.info(f"🔍 BRACKET DEBUG: Parsed call result: {parsed_call}")
|
1619 |
+
|
1620 |
+
if parsed_call:
|
1621 |
+
# 发送工具调用
|
1622 |
+
delta_tool = {
|
1623 |
+
"tool_calls": [{
|
1624 |
+
"index": current_tool_call_index,
|
1625 |
+
"id": parsed_call.id,
|
1626 |
+
"type": "function",
|
1627 |
+
"function": {
|
1628 |
+
"name": parsed_call.function["name"],
|
1629 |
+
"arguments": parsed_call.function["arguments"]
|
1630 |
+
}
|
1631 |
+
}]
|
1632 |
+
}
|
1633 |
+
if not sent_role:
|
1634 |
+
delta_tool["role"] = "assistant"
|
1635 |
+
sent_role = True
|
1636 |
+
|
1637 |
+
logger.info(f"📤 STREAM: Sending tool call chunk: {delta_tool}")
|
1638 |
+
tool_chunk = ChatCompletionStreamResponse(
|
1639 |
+
id=response_id, model=request.model, created=created,
|
1640 |
+
choices=[StreamChoice(index=0, delta=delta_tool)]
|
1641 |
+
)
|
1642 |
+
yield f"data: {tool_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1643 |
+
current_tool_call_index += 1
|
1644 |
+
streamed_tool_calls_count += 1
|
1645 |
+
else:
|
1646 |
+
logger.error(f"❌ BRACKET DEBUG: Failed to parse tool call")
|
1647 |
+
|
1648 |
+
# 更新缓冲区
|
1649 |
+
content_buffer = remaining_text[bracket_end + 1:]
|
1650 |
+
incomplete_tool_call = ""
|
1651 |
+
logger.info(f"🔍 BRACKET DEBUG: Updated buffer after tool call: >>>{content_buffer}<<<")
|
1652 |
+
|
1653 |
+
# 处理剩余的内容
|
1654 |
+
logger.info(f"📊 STREAM END: Processing remaining content")
|
1655 |
+
logger.info(f"📊 STREAM END: incomplete_tool_call: >>>{incomplete_tool_call}<<<")
|
1656 |
+
logger.info(f"📊 STREAM END: content_buffer: >>>{content_buffer}<<<")
|
1657 |
+
|
1658 |
+
if incomplete_tool_call:
|
1659 |
+
# 尝试再次解析不完整的工具调用(可能现在已经完整了)
|
1660 |
+
logger.info(f"🔄 STREAM END: Attempting to parse incomplete tool call")
|
1661 |
+
content_buffer = incomplete_tool_call + content_buffer
|
1662 |
+
incomplete_tool_call = ""
|
1663 |
+
|
1664 |
+
# 重复上面的解析逻辑
|
1665 |
+
called_start = content_buffer.find("[Called")
|
1666 |
+
if called_start == 0:
|
1667 |
+
bracket_end = find_matching_bracket(content_buffer, 0)
|
1668 |
+
logger.info(f"🔄 STREAM END: bracket_end for incomplete={bracket_end}")
|
1669 |
+
if bracket_end != -1:
|
1670 |
+
tool_call_text = content_buffer[:bracket_end + 1]
|
1671 |
+
parsed_call = parse_single_tool_call(tool_call_text)
|
1672 |
+
|
1673 |
+
if parsed_call:
|
1674 |
+
delta_tool = {
|
1675 |
+
"tool_calls": [{
|
1676 |
+
"index": current_tool_call_index,
|
1677 |
+
"id": parsed_call.id,
|
1678 |
+
"type": "function",
|
1679 |
+
"function": {
|
1680 |
+
"name": parsed_call.function["name"],
|
1681 |
+
"arguments": parsed_call.function["arguments"]
|
1682 |
+
}
|
1683 |
+
}]
|
1684 |
+
}
|
1685 |
+
if not sent_role:
|
1686 |
+
delta_tool["role"] = "assistant"
|
1687 |
+
sent_role = True
|
1688 |
+
|
1689 |
+
logger.info(f"📤 STREAM END: Sending final tool call: {delta_tool}")
|
1690 |
+
tool_chunk = ChatCompletionStreamResponse(
|
1691 |
+
id=response_id, model=request.model, created=created,
|
1692 |
+
choices=[StreamChoice(index=0, delta=delta_tool)]
|
1693 |
+
)
|
1694 |
+
yield f"data: {tool_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1695 |
+
current_tool_call_index += 1
|
1696 |
+
streamed_tool_calls_count += 1
|
1697 |
+
|
1698 |
+
content_buffer = content_buffer[bracket_end + 1:]
|
1699 |
+
|
1700 |
+
# 发送任何剩余的内容
|
1701 |
+
if content_buffer.strip():
|
1702 |
+
logger.info(f"📤 STREAM END: Sending remaining content: >>>{content_buffer}<<<")
|
1703 |
+
delta_content = {"content": content_buffer}
|
1704 |
+
if not sent_role:
|
1705 |
+
delta_content["role"] = "assistant"
|
1706 |
+
sent_role = True
|
1707 |
+
|
1708 |
+
content_chunk = ChatCompletionStreamResponse(
|
1709 |
+
id=response_id, model=request.model, created=created,
|
1710 |
+
choices=[StreamChoice(index=0, delta=delta_content)]
|
1711 |
+
)
|
1712 |
+
yield f"data: {content_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1713 |
+
|
1714 |
+
# --- 流结束 ---
|
1715 |
+
finish_reason = "tool_calls" if streamed_tool_calls_count > 0 else "stop"
|
1716 |
+
logger.info(f"🏁 STREAM FINISH: streamed_tool_calls_count={streamed_tool_calls_count}, finish_reason={finish_reason}")
|
1717 |
+
end_chunk = ChatCompletionStreamResponse(
|
1718 |
+
id=response_id, model=request.model, created=created,
|
1719 |
+
choices=[StreamChoice(index=0, delta={}, finish_reason=finish_reason)]
|
1720 |
+
)
|
1721 |
+
yield f"data: {end_chunk.model_dump_json(exclude_none=True)}\n\n"
|
1722 |
+
|
1723 |
+
yield "data: [DONE]\n\n"
|
1724 |
+
|
1725 |
+
return StreamingResponse(
|
1726 |
+
generate_stream(),
|
1727 |
+
media_type="text/event-stream",
|
1728 |
+
headers={
|
1729 |
+
"Cache-Control": "no-cache",
|
1730 |
+
"Connection": "keep-alive",
|
1731 |
+
"Content-Type": "text/event-stream"
|
1732 |
+
}
|
1733 |
+
)
|
1734 |
+
|
1735 |
+
except Exception as e:
|
1736 |
+
logger.error(f"❌ 流式响应生成失败: {str(e)}")
|
1737 |
+
import traceback
|
1738 |
+
traceback.print_exc()
|
1739 |
+
raise HTTPException(
|
1740 |
+
status_code=500,
|
1741 |
+
detail={
|
1742 |
+
"error": {
|
1743 |
+
"message": f"Stream generation failed: {str(e)}",
|
1744 |
+
"type": "internal_server_error",
|
1745 |
+
"param": None,
|
1746 |
+
"code": "stream_error"
|
1747 |
+
}
|
1748 |
+
}
|
1749 |
+
)
|
1750 |
+
|
1751 |
+
@app.get("/health")
|
1752 |
+
async def health_check():
|
1753 |
+
"""Health check endpoint"""
|
1754 |
+
return {"status": "healthy", "service": "Ki2API", "version": "3.0.1"}
|
1755 |
+
|
1756 |
+
@app.get("/")
|
1757 |
+
async def root():
|
1758 |
+
"""Root endpoint with service information"""
|
1759 |
+
return {
|
1760 |
+
"service": "Ki2API",
|
1761 |
+
"description": "OpenAI-compatible API for Claude Sonnet 4 via AWS CodeWhisperer",
|
1762 |
+
"version": "3.0.1",
|
1763 |
+
"endpoints": {
|
1764 |
+
"models": "/v1/models",
|
1765 |
+
"chat": "/v1/chat/completions",
|
1766 |
+
"health": "/health"
|
1767 |
+
},
|
1768 |
+
"features": {
|
1769 |
+
"streaming": True,
|
1770 |
+
"tools": True,
|
1771 |
+
"multiple_models": True,
|
1772 |
+
"xml_tool_parsing": True,
|
1773 |
+
"auto_token_refresh": True,
|
1774 |
+
"null_content_handling": True,
|
1775 |
+
"tool_call_deduplication": True
|
1776 |
+
}
|
1777 |
+
}
|
1778 |
+
|
1779 |
+
if __name__ == "__main__":
|
1780 |
+
import uvicorn
|
1781 |
+
import os
|
1782 |
+
port = int(os.getenv("PORT", 7860))
|
1783 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.104.1
|
2 |
+
uvicorn[standard]==0.24.0
|
3 |
+
httpx==0.25.2
|
4 |
+
python-dotenv==1.0.0
|
5 |
+
pydantic==2.5.0
|
6 |
+
json_repair==0.48.0
|