1inkusFace commited on
Commit
a035af2
·
verified ·
1 Parent(s): f1a0bd5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -36,6 +36,7 @@ torch.backends.cudnn.deterministic = False
36
  torch.backends.cudnn.benchmark = False
37
  #torch.backends.cuda.preferred_blas_library="cublas"
38
  #torch.backends.cuda.preferred_linalg_library="cusolver"
 
39
 
40
  hftoken = os.getenv("HF_AUTH_TOKEN")
41
 
@@ -112,10 +113,10 @@ def infer_30(
112
  num_inference_steps,
113
  progress=gr.Progress(track_tqdm=True),
114
  ):
 
115
  pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
116
  pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
117
  pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
118
- torch.set_float32_matmul_precision("highest")
119
  seed = random.randint(0, MAX_SEED)
120
  generator = torch.Generator(device='cuda').manual_seed(seed)
121
  print('-- generating image --')
@@ -162,10 +163,10 @@ def infer_60(
162
  num_inference_steps,
163
  progress=gr.Progress(track_tqdm=True),
164
  ):
 
165
  pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
166
  pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
167
  pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
168
- torch.set_float32_matmul_precision("highest")
169
  seed = random.randint(0, MAX_SEED)
170
  generator = torch.Generator(device='cuda').manual_seed(seed)
171
  print('-- generating image --')
@@ -212,10 +213,10 @@ def infer_90(
212
  num_inference_steps,
213
  progress=gr.Progress(track_tqdm=True),
214
  ):
 
215
  pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
216
  pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
217
  pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
218
- torch.set_float32_matmul_precision("highest")
219
  seed = random.randint(0, MAX_SEED)
220
  generator = torch.Generator(device='cuda').manual_seed(seed)
221
  print('-- generating image --')
@@ -262,7 +263,10 @@ def infer_100(
262
  num_inference_steps,
263
  progress=gr.Progress(track_tqdm=True),
264
  ):
265
- torch.set_float32_matmul_precision("highest")
 
 
 
266
  seed = random.randint(0, MAX_SEED)
267
  generator = torch.Generator(device='cuda').manual_seed(seed)
268
  print('-- generating image --')
 
36
  torch.backends.cudnn.benchmark = False
37
  #torch.backends.cuda.preferred_blas_library="cublas"
38
  #torch.backends.cuda.preferred_linalg_library="cusolver"
39
+ torch.set_float32_matmul_precision("highest")
40
 
41
  hftoken = os.getenv("HF_AUTH_TOKEN")
42
 
 
113
  num_inference_steps,
114
  progress=gr.Progress(track_tqdm=True),
115
  ):
116
+ pipe.vae.to('cpu')
117
  pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
118
  pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
119
  pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
 
120
  seed = random.randint(0, MAX_SEED)
121
  generator = torch.Generator(device='cuda').manual_seed(seed)
122
  print('-- generating image --')
 
163
  num_inference_steps,
164
  progress=gr.Progress(track_tqdm=True),
165
  ):
166
+ pipe.vae.to('cpu')
167
  pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
168
  pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
169
  pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
 
170
  seed = random.randint(0, MAX_SEED)
171
  generator = torch.Generator(device='cuda').manual_seed(seed)
172
  print('-- generating image --')
 
213
  num_inference_steps,
214
  progress=gr.Progress(track_tqdm=True),
215
  ):
216
+ pipe.vae.to('cpu')
217
  pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
218
  pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
219
  pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
 
220
  seed = random.randint(0, MAX_SEED)
221
  generator = torch.Generator(device='cuda').manual_seed(seed)
222
  print('-- generating image --')
 
263
  num_inference_steps,
264
  progress=gr.Progress(track_tqdm=True),
265
  ):
266
+ pipe.vae.to('cpu')
267
+ pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
268
+ pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
269
+ pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
270
  seed = random.randint(0, MAX_SEED)
271
  generator = torch.Generator(device='cuda').manual_seed(seed)
272
  print('-- generating image --')