Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,16 @@ import numpy as np
|
|
9 |
import random
|
10 |
|
11 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
|
13 |
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
14 |
from transformers import CLIPTokenizer, T5TokenizerFast
|
@@ -21,22 +31,8 @@ from image_gen_aux import UpscaleWithModel
|
|
21 |
from huggingface_hub import hf_hub_download
|
22 |
import datetime
|
23 |
import cyper
|
24 |
-
|
25 |
-
#from models.transformer_sd3 import SD3Transformer2DModel
|
26 |
-
#from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
27 |
-
|
28 |
from PIL import Image
|
29 |
|
30 |
-
torch.backends.cuda.matmul.allow_tf32 = False
|
31 |
-
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
32 |
-
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
33 |
-
torch.backends.cudnn.allow_tf32 = False
|
34 |
-
torch.backends.cudnn.deterministic = False
|
35 |
-
torch.backends.cudnn.benchmark = False
|
36 |
-
#torch.backends.cuda.preferred_blas_library="cublas"
|
37 |
-
#torch.backends.cuda.preferred_linalg_library="cusolver"
|
38 |
-
torch.set_float32_matmul_precision("highest")
|
39 |
-
|
40 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
41 |
|
42 |
code = r'''
|
@@ -65,7 +61,8 @@ def upload_to_ftp(filename):
|
|
65 |
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
66 |
|
67 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
68 |
-
|
|
|
69 |
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
|
70 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
71 |
#"stabilityai # stable-diffusion-3.5-large",
|
@@ -92,67 +89,14 @@ text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-larg
|
|
92 |
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
93 |
pipe.transformer=ll_transformer
|
94 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
95 |
-
|
96 |
pipe.to(device=device, dtype=torch.bfloat16)
|
97 |
-
|
98 |
-
#pipe.vae=vaeX.to('cpu')
|
99 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
100 |
|
101 |
MAX_SEED = np.iinfo(np.int32).max
|
102 |
|
103 |
MAX_IMAGE_SIZE = 4096
|
104 |
|
105 |
-
@spaces.GPU(duration=40)
|
106 |
-
def infer_30(
|
107 |
-
prompt,
|
108 |
-
negative_prompt_1,
|
109 |
-
negative_prompt_2,
|
110 |
-
negative_prompt_3,
|
111 |
-
width,
|
112 |
-
height,
|
113 |
-
guidance_scale,
|
114 |
-
num_inference_steps,
|
115 |
-
progress=gr.Progress(track_tqdm=True),
|
116 |
-
):
|
117 |
-
pipe.vae=vaeX.to('cpu')
|
118 |
-
pipe.transformer=ll_transformer
|
119 |
-
pipe.text_encoder=text_encoder #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
120 |
-
pipe.text_encoder_2=text_encoder_2 #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
121 |
-
pipe.text_encoder_3=text_encoder_3 #T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
122 |
-
seed = random.randint(0, MAX_SEED)
|
123 |
-
generator = torch.Generator(device='cuda').manual_seed(seed)
|
124 |
-
print('-- generating image --')
|
125 |
-
sd_image = pipe(
|
126 |
-
prompt=prompt,
|
127 |
-
prompt_2=prompt,
|
128 |
-
prompt_3=prompt,
|
129 |
-
negative_prompt=negative_prompt_1,
|
130 |
-
negative_prompt_2=negative_prompt_2,
|
131 |
-
negative_prompt_3=negative_prompt_3,
|
132 |
-
guidance_scale=guidance_scale,
|
133 |
-
num_inference_steps=num_inference_steps,
|
134 |
-
width=width,
|
135 |
-
height=height,
|
136 |
-
# cross_attention_kwargs={"scale": 0.75},
|
137 |
-
generator=generator,
|
138 |
-
max_sequence_length=512
|
139 |
-
).images[0]
|
140 |
-
print('-- got image --')
|
141 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
142 |
-
sd35_path = f"sd35ll_{timestamp}.png"
|
143 |
-
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
144 |
-
pyx.upload_to_ftp(sd35_path)
|
145 |
-
# pipe.unet.to('cpu')
|
146 |
-
upscaler_2.to(torch.device('cuda'))
|
147 |
-
with torch.no_grad():
|
148 |
-
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
149 |
-
print('-- got upscaled image --')
|
150 |
-
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
151 |
-
upscale_path = f"sd35ll_upscale_{timestamp}.png"
|
152 |
-
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
153 |
-
pyx.upload_to_ftp(upscale_path)
|
154 |
-
return sd_image, prompt
|
155 |
-
|
156 |
@spaces.GPU(duration=70)
|
157 |
def infer_60(
|
158 |
prompt,
|
@@ -184,7 +128,6 @@ def infer_60(
|
|
184 |
num_inference_steps=num_inference_steps,
|
185 |
width=width,
|
186 |
height=height,
|
187 |
-
# cross_attention_kwargs={"scale": 0.75},
|
188 |
generator=generator,
|
189 |
max_sequence_length=512
|
190 |
).images[0]
|
@@ -193,7 +136,6 @@ def infer_60(
|
|
193 |
sd35_path = f"sd35ll_{timestamp}.png"
|
194 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
195 |
pyx.upload_to_ftp(sd35_path)
|
196 |
-
# pipe.unet.to('cpu')
|
197 |
upscaler_2.to(torch.device('cuda'))
|
198 |
with torch.no_grad():
|
199 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
@@ -235,7 +177,6 @@ def infer_90(
|
|
235 |
num_inference_steps=num_inference_steps,
|
236 |
width=width,
|
237 |
height=height,
|
238 |
-
# cross_attention_kwargs={"scale": 0.75},
|
239 |
generator=generator,
|
240 |
max_sequence_length=512
|
241 |
).images[0]
|
@@ -244,7 +185,6 @@ def infer_90(
|
|
244 |
sd35_path = f"sd35ll_{timestamp}.png"
|
245 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
246 |
pyx.upload_to_ftp(sd35_path)
|
247 |
-
# pipe.unet.to('cpu')
|
248 |
upscaler_2.to(torch.device('cuda'))
|
249 |
with torch.no_grad():
|
250 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
@@ -255,8 +195,8 @@ def infer_90(
|
|
255 |
pyx.upload_to_ftp(upscale_path)
|
256 |
return sd_image, prompt
|
257 |
|
258 |
-
@spaces.GPU(duration=
|
259 |
-
def
|
260 |
prompt,
|
261 |
negative_prompt_1,
|
262 |
negative_prompt_2,
|
@@ -294,7 +234,6 @@ def infer_100(
|
|
294 |
sd35_path = f"sd35ll_{timestamp}.png"
|
295 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
296 |
pyx.upload_to_ftp(sd35_path)
|
297 |
-
# pipe.unet.to('cpu')
|
298 |
upscaler_2.to(torch.device('cuda'))
|
299 |
with torch.no_grad():
|
300 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
@@ -322,10 +261,9 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
322 |
placeholder="Enter your prompt",
|
323 |
container=False,
|
324 |
)
|
325 |
-
run_button_30 = gr.Button("Run 30", scale=0, variant="primary")
|
326 |
run_button_60 = gr.Button("Run 60", scale=0, variant="primary")
|
327 |
run_button_90 = gr.Button("Run 90", scale=0, variant="primary")
|
328 |
-
|
329 |
result = gr.Image(label="Result", show_label=False)
|
330 |
with gr.Accordion("Advanced Settings", open=True):
|
331 |
negative_prompt_1 = gr.Text(
|
@@ -382,21 +320,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
382 |
value=50,
|
383 |
)
|
384 |
gr.on(
|
385 |
-
triggers=[run_button_30.click, prompt.submit],
|
386 |
-
fn=infer_30,
|
387 |
-
inputs=[
|
388 |
-
prompt,
|
389 |
-
negative_prompt_1,
|
390 |
-
negative_prompt_2,
|
391 |
-
negative_prompt_3,
|
392 |
-
width,
|
393 |
-
height,
|
394 |
-
guidance_scale,
|
395 |
-
num_inference_steps,
|
396 |
-
],
|
397 |
-
outputs=[result, expanded_prompt_output],
|
398 |
-
)
|
399 |
-
gr.on(
|
400 |
triggers=[run_button_60.click, prompt.submit],
|
401 |
fn=infer_60,
|
402 |
inputs=[
|
@@ -427,8 +350,8 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
427 |
outputs=[result, expanded_prompt_output],
|
428 |
)
|
429 |
gr.on(
|
430 |
-
triggers=[
|
431 |
-
fn=
|
432 |
inputs=[
|
433 |
prompt,
|
434 |
negative_prompt_1,
|
|
|
9 |
import random
|
10 |
|
11 |
import torch
|
12 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
13 |
+
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
14 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
15 |
+
torch.backends.cudnn.allow_tf32 = False
|
16 |
+
torch.backends.cudnn.deterministic = False
|
17 |
+
torch.backends.cudnn.benchmark = False
|
18 |
+
#torch.backends.cuda.preferred_blas_library="cublas"
|
19 |
+
#torch.backends.cuda.preferred_linalg_library="cusolver"
|
20 |
+
torch.set_float32_matmul_precision("highest")
|
21 |
+
|
22 |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
|
23 |
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
24 |
from transformers import CLIPTokenizer, T5TokenizerFast
|
|
|
31 |
from huggingface_hub import hf_hub_download
|
32 |
import datetime
|
33 |
import cyper
|
|
|
|
|
|
|
|
|
34 |
from PIL import Image
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
hftoken = os.getenv("HF_AUTH_TOKEN")
|
37 |
|
38 |
code = r'''
|
|
|
61 |
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
62 |
|
63 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
64 |
+
|
65 |
+
#vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", use_safetensors=True, subfolder='vae',token=True)
|
66 |
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, subfolder='vae', low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True)
|
67 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
68 |
#"stabilityai # stable-diffusion-3.5-large",
|
|
|
89 |
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer',token=True).to(torch.device("cuda:0"), dtype=torch.bfloat16)
|
90 |
pipe.transformer=ll_transformer
|
91 |
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
|
|
|
92 |
pipe.to(device=device, dtype=torch.bfloat16)
|
93 |
+
|
|
|
94 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cpu'))
|
95 |
|
96 |
MAX_SEED = np.iinfo(np.int32).max
|
97 |
|
98 |
MAX_IMAGE_SIZE = 4096
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
@spaces.GPU(duration=70)
|
101 |
def infer_60(
|
102 |
prompt,
|
|
|
128 |
num_inference_steps=num_inference_steps,
|
129 |
width=width,
|
130 |
height=height,
|
|
|
131 |
generator=generator,
|
132 |
max_sequence_length=512
|
133 |
).images[0]
|
|
|
136 |
sd35_path = f"sd35ll_{timestamp}.png"
|
137 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
138 |
pyx.upload_to_ftp(sd35_path)
|
|
|
139 |
upscaler_2.to(torch.device('cuda'))
|
140 |
with torch.no_grad():
|
141 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
|
|
177 |
num_inference_steps=num_inference_steps,
|
178 |
width=width,
|
179 |
height=height,
|
|
|
180 |
generator=generator,
|
181 |
max_sequence_length=512
|
182 |
).images[0]
|
|
|
185 |
sd35_path = f"sd35ll_{timestamp}.png"
|
186 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
187 |
pyx.upload_to_ftp(sd35_path)
|
|
|
188 |
upscaler_2.to(torch.device('cuda'))
|
189 |
with torch.no_grad():
|
190 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
|
|
195 |
pyx.upload_to_ftp(upscale_path)
|
196 |
return sd_image, prompt
|
197 |
|
198 |
+
@spaces.GPU(duration=120)
|
199 |
+
def infer_110(
|
200 |
prompt,
|
201 |
negative_prompt_1,
|
202 |
negative_prompt_2,
|
|
|
234 |
sd35_path = f"sd35ll_{timestamp}.png"
|
235 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
236 |
pyx.upload_to_ftp(sd35_path)
|
|
|
237 |
upscaler_2.to(torch.device('cuda'))
|
238 |
with torch.no_grad():
|
239 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
|
|
261 |
placeholder="Enter your prompt",
|
262 |
container=False,
|
263 |
)
|
|
|
264 |
run_button_60 = gr.Button("Run 60", scale=0, variant="primary")
|
265 |
run_button_90 = gr.Button("Run 90", scale=0, variant="primary")
|
266 |
+
run_button_110 = gr.Button("Run 110", scale=0, variant="primary")
|
267 |
result = gr.Image(label="Result", show_label=False)
|
268 |
with gr.Accordion("Advanced Settings", open=True):
|
269 |
negative_prompt_1 = gr.Text(
|
|
|
320 |
value=50,
|
321 |
)
|
322 |
gr.on(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
triggers=[run_button_60.click, prompt.submit],
|
324 |
fn=infer_60,
|
325 |
inputs=[
|
|
|
350 |
outputs=[result, expanded_prompt_output],
|
351 |
)
|
352 |
gr.on(
|
353 |
+
triggers=[run_button_110.click, prompt.submit],
|
354 |
+
fn=infer_110,
|
355 |
inputs=[
|
356 |
prompt,
|
357 |
negative_prompt_1,
|