1inkusFace commited on
Commit
6a35169
·
verified ·
1 Parent(s): 93ef1e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -30
app.py CHANGED
@@ -85,9 +85,9 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
85
  #torch_dtype=torch.bfloat16,
86
  #use_safetensors=False,
87
  )
88
- text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
89
- text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
90
- text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
91
 
92
  pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
93
 
@@ -118,17 +118,11 @@ def infer_30(
118
  torch.set_float32_matmul_precision("highest")
119
  seed = random.randint(0, MAX_SEED)
120
  generator = torch.Generator(device='cuda').manual_seed(seed)
121
- input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
122
- max_length = 77
123
- if input_ids.shape[1] > max_length:
124
- input_ids = input_ids[:, :max_length]
125
- input_ids = input_ids.to(device)
126
  print('-- generating image --')
127
  sd_image = pipe(
128
- prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
129
- #prompt=prompt,
130
- #prompt_2=prompt,
131
- #prompt_3=prompt,
132
  negative_prompt=negative_prompt_1,
133
  negative_prompt_2=negative_prompt_2,
134
  negative_prompt_3=negative_prompt_3,
@@ -174,17 +168,11 @@ def infer_60(
174
  torch.set_float32_matmul_precision("highest")
175
  seed = random.randint(0, MAX_SEED)
176
  generator = torch.Generator(device='cuda').manual_seed(seed)
177
- input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
178
- max_length = 77
179
- if input_ids.shape[1] > max_length:
180
- input_ids = input_ids[:, :max_length]
181
- input_ids = input_ids.to(device)
182
  print('-- generating image --')
183
  sd_image = pipe(
184
- prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
185
- #prompt=prompt,
186
- #prompt_2=prompt,
187
- #prompt_3=prompt,
188
  negative_prompt=negative_prompt_1,
189
  negative_prompt_2=negative_prompt_2,
190
  negative_prompt_3=negative_prompt_3,
@@ -230,17 +218,11 @@ def infer_90(
230
  torch.set_float32_matmul_precision("highest")
231
  seed = random.randint(0, MAX_SEED)
232
  generator = torch.Generator(device='cuda').manual_seed(seed)
233
- input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
234
- max_length = 77
235
- if input_ids.shape[1] > max_length:
236
- input_ids = input_ids[:, :max_length]
237
- input_ids = input_ids.to(device)
238
  print('-- generating image --')
239
  sd_image = pipe(
240
- prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
241
- #prompt=prompt,
242
- #prompt_2=prompt,
243
- #prompt_3=prompt,
244
  negative_prompt=negative_prompt_1,
245
  negative_prompt_2=negative_prompt_2,
246
  negative_prompt_3=negative_prompt_3,
 
85
  #torch_dtype=torch.bfloat16,
86
  #use_safetensors=False,
87
  )
88
+ text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(torch.device("cuda:0", dtype=torch.bfloat16)
89
+ text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(torch.device("cuda:0", dtype=torch.bfloat16)
90
+ text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(torch.device("cuda:0", dtype=torch.bfloat16)
91
 
92
  pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
93
 
 
118
  torch.set_float32_matmul_precision("highest")
119
  seed = random.randint(0, MAX_SEED)
120
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
 
 
 
 
121
  print('-- generating image --')
122
  sd_image = pipe(
123
+ prompt=prompt,
124
+ prompt_2=prompt,
125
+ prompt_3=prompt,
 
126
  negative_prompt=negative_prompt_1,
127
  negative_prompt_2=negative_prompt_2,
128
  negative_prompt_3=negative_prompt_3,
 
168
  torch.set_float32_matmul_precision("highest")
169
  seed = random.randint(0, MAX_SEED)
170
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
 
 
 
 
171
  print('-- generating image --')
172
  sd_image = pipe(
173
+ prompt=prompt,
174
+ prompt_2=prompt,
175
+ prompt_3=prompt,
 
176
  negative_prompt=negative_prompt_1,
177
  negative_prompt_2=negative_prompt_2,
178
  negative_prompt_3=negative_prompt_3,
 
218
  torch.set_float32_matmul_precision("highest")
219
  seed = random.randint(0, MAX_SEED)
220
  generator = torch.Generator(device='cuda').manual_seed(seed)
 
 
 
 
 
221
  print('-- generating image --')
222
  sd_image = pipe(
223
+ prompt=prompt,
224
+ prompt_2=prompt,
225
+ prompt_3=prompt,
 
226
  negative_prompt=negative_prompt_1,
227
  negative_prompt_2=negative_prompt_2,
228
  negative_prompt_3=negative_prompt_3,