Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,452 Bytes
c311821 9b2c83e c311821 9b2c83e 890d27d 9b2c83e c311821 9b2c83e c311821 9b2c83e c311821 9b2c83e c311821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Qwen/Qwen2.5-Coder-14B-Instruct"
# Load model and tokenizer (outside the function for efficiency)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True # Add this line for Qwen models
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Add this line for Qwen models
@spaces.GPU(required=True)
def generate_code(prompt):
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
# Example usage (optional - remove for Spaces deployment)
if __name__ == "__main__":
prompt = "write a quick sort algorithm."
generated_code = generate_code(prompt)
print(generated_code) |