import spaces from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "Qwen/Qwen2.5-Coder-14B-Instruct" # Load model and tokenizer (outside the function for efficiency) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", trust_remote_code=True # Add this line for Qwen models ) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Add this line for Qwen models @spaces.GPU(required=True) def generate_code(prompt): messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response # Example usage (optional - remove for Spaces deployment) if __name__ == "__main__": prompt = "write a quick sort algorithm." generated_code = generate_code(prompt) print(generated_code)