Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Thu Sep 20 16:56:19 2018 | |
@author: harry | |
""" | |
import librosa | |
import numpy as np | |
import torch | |
import torch.autograd as grad | |
import torch.nn.functional as F | |
from utils.hparam import hparam as hp | |
def get_centroids_prior(embeddings): | |
centroids = [] | |
for speaker in embeddings: | |
centroid = 0 | |
for utterance in speaker: | |
centroid = centroid + utterance | |
centroid = centroid/len(speaker) | |
centroids.append(centroid) | |
centroids = torch.stack(centroids) | |
return centroids | |
def get_centroids(embeddings): | |
centroids = embeddings.mean(dim=1) | |
return centroids | |
def get_centroid(embeddings, speaker_num, utterance_num): | |
centroid = 0 | |
for utterance_id, utterance in enumerate(embeddings[speaker_num]): | |
if utterance_id == utterance_num: | |
continue | |
centroid = centroid + utterance | |
centroid = centroid/(len(embeddings[speaker_num])-1) | |
return centroid | |
def get_utterance_centroids(embeddings): | |
""" | |
Returns the centroids for each utterance of a speaker, where | |
the utterance centroid is the speaker centroid without considering | |
this utterance | |
Shape of embeddings should be: | |
(speaker_ct, utterance_per_speaker_ct, embedding_size) | |
""" | |
sum_centroids = embeddings.sum(dim=1) | |
# we want to subtract out each utterance, prior to calculating the | |
# the utterance centroid | |
sum_centroids = sum_centroids.reshape( | |
sum_centroids.shape[0], 1, sum_centroids.shape[-1] | |
) | |
# we want the mean but not including the utterance itself, so -1 | |
num_utterances = embeddings.shape[1] - 1 | |
centroids = (sum_centroids - embeddings) / num_utterances | |
return centroids | |
def get_cossim_prior(embeddings, centroids): | |
# Calculates cosine similarity matrix. Requires (N, M, feature) input | |
cossim = torch.zeros(embeddings.size(0),embeddings.size(1),centroids.size(0)) | |
for speaker_num, speaker in enumerate(embeddings): | |
for utterance_num, utterance in enumerate(speaker): | |
for centroid_num, centroid in enumerate(centroids): | |
if speaker_num == centroid_num: | |
centroid = get_centroid(embeddings, speaker_num, utterance_num) | |
output = F.cosine_similarity(utterance,centroid,dim=0)+1e-6 | |
cossim[speaker_num][utterance_num][centroid_num] = output | |
return cossim | |
def get_cossim(embeddings, centroids): | |
# number of utterances per speaker | |
num_utterances = embeddings.shape[1] | |
utterance_centroids = get_utterance_centroids(embeddings) | |
# flatten the embeddings and utterance centroids to just utterance, | |
# so we can do cosine similarity | |
utterance_centroids_flat = utterance_centroids.view( | |
utterance_centroids.shape[0] * utterance_centroids.shape[1], | |
-1 | |
) | |
embeddings_flat = embeddings.view( | |
embeddings.shape[0] * num_utterances, | |
-1 | |
) | |
# the cosine distance between utterance and the associated centroids | |
# for that utterance | |
# this is each speaker's utterances against his own centroid, but each | |
# comparison centroid has the current utterance removed | |
cos_same = F.cosine_similarity(embeddings_flat, utterance_centroids_flat) | |
# now we get the cosine distance between each utterance and the other speakers' | |
# centroids | |
# to do so requires comparing each utterance to each centroid. To keep the | |
# operation fast, we vectorize by using matrices L (embeddings) and | |
# R (centroids) where L has each utterance repeated sequentially for all | |
# comparisons and R has the entire centroids frame repeated for each utterance | |
centroids_expand = centroids.repeat((num_utterances * embeddings.shape[0], 1)) | |
embeddings_expand = embeddings_flat.unsqueeze(1).repeat(1, embeddings.shape[0], 1) | |
embeddings_expand = embeddings_expand.view( | |
embeddings_expand.shape[0] * embeddings_expand.shape[1], | |
embeddings_expand.shape[-1] | |
) | |
cos_diff = F.cosine_similarity(embeddings_expand, centroids_expand) | |
cos_diff = cos_diff.view( | |
embeddings.size(0), | |
num_utterances, | |
centroids.size(0) | |
) | |
# assign the cosine distance for same speakers to the proper idx | |
same_idx = list(range(embeddings.size(0))) | |
cos_diff[same_idx, :, same_idx] = cos_same.view(embeddings.shape[0], num_utterances) | |
cos_diff = cos_diff + 1e-6 | |
return cos_diff | |
def calc_loss_prior(sim_matrix): | |
# Calculates loss from (N, M, K) similarity matrix | |
per_embedding_loss = torch.zeros(sim_matrix.size(0), sim_matrix.size(1)) | |
for j in range(len(sim_matrix)): | |
for i in range(sim_matrix.size(1)): | |
per_embedding_loss[j][i] = -(sim_matrix[j][i][j] - ((torch.exp(sim_matrix[j][i]).sum()+1e-6).log_())) | |
loss = per_embedding_loss.sum() | |
return loss, per_embedding_loss | |
def calc_loss(sim_matrix): | |
same_idx = list(range(sim_matrix.size(0))) | |
pos = sim_matrix[same_idx, :, same_idx] | |
neg = (torch.exp(sim_matrix).sum(dim=2) + 1e-6).log_() | |
per_embedding_loss = -1 * (pos - neg) | |
loss = per_embedding_loss.sum() | |
return loss, per_embedding_loss | |
def normalize_0_1(values, max_value, min_value): | |
normalized = np.clip((values - min_value) / (max_value - min_value), 0, 1) | |
return normalized | |
def mfccs_and_spec(wav_file, wav_process = False, calc_mfccs=False, calc_mag_db=False): | |
sound_file, _ = librosa.core.load(wav_file, sr=hp.data.sr) | |
window_length = int(hp.data.window*hp.data.sr) | |
hop_length = int(hp.data.hop*hp.data.sr) | |
duration = hp.data.tisv_frame * hp.data.hop + hp.data.window | |
# Cut silence and fix length | |
if wav_process == True: | |
sound_file, index = librosa.effects.trim(sound_file, frame_length=window_length, hop_length=hop_length) | |
length = int(hp.data.sr * duration) | |
sound_file = librosa.util.fix_length(sound_file, length) | |
spec = librosa.stft(sound_file, n_fft=hp.data.nfft, hop_length=hop_length, win_length=window_length) | |
mag_spec = np.abs(spec) | |
mel_basis = librosa.filters.mel(hp.data.sr, hp.data.nfft, n_mels=hp.data.nmels) | |
mel_spec = np.dot(mel_basis, mag_spec) | |
mag_db = librosa.amplitude_to_db(mag_spec) | |
#db mel spectrogram | |
mel_db = librosa.amplitude_to_db(mel_spec).T | |
mfccs = None | |
if calc_mfccs: | |
mfccs = np.dot(librosa.filters.dct(40, mel_db.shape[0]), mel_db).T | |
return mfccs, mel_db, mag_db | |
if __name__ == "__main__": | |
w = grad.Variable(torch.tensor(1.0)) | |
b = grad.Variable(torch.tensor(0.0)) | |
embeddings = torch.tensor([[0,1,0],[0,0,1], [0,1,0], [0,1,0], [1,0,0], [1,0,0]]).to(torch.float).reshape(3,2,3) | |
centroids = get_centroids(embeddings) | |
cossim = get_cossim(embeddings, centroids) | |
sim_matrix = w*cossim + b | |
loss, per_embedding_loss = calc_loss(sim_matrix) | |