Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
""" | |
Created on Wed Sep 5 20:58:34 2018 | |
@author: harry | |
""" | |
import torch | |
import torch.nn as nn | |
from utils.hparam import hparam as hp | |
from utils.utils import get_centroids, get_cossim, calc_loss | |
from utils.kan import KANLinear | |
class SpeechEmbedder(nn.Module): | |
def __init__(self): | |
super(SpeechEmbedder, self).__init__() | |
self.LSTM_stack = nn.LSTM(hp.data.nmels, hp.model.hidden, num_layers=hp.model.num_layer, batch_first=True) | |
for name, param in self.LSTM_stack.named_parameters(): | |
if 'bias' in name: | |
nn.init.constant_(param, 0.0) | |
elif 'weight' in name: | |
nn.init.xavier_normal_(param) | |
self.projection = nn.Linear(hp.model.hidden, hp.model.proj) | |
def forward(self, x): | |
x, _ = self.LSTM_stack(x.float()) #(batch, frames, n_mels) | |
#only use last frame | |
x = x[:,x.size(1)-1] | |
x = self.projection(x.float()) | |
x = x / torch.norm(x, dim=1).unsqueeze(1) | |
return x | |
class SpeechEmbedderGRU(nn.Module): | |
def __init__(self): | |
super(SpeechEmbedderGRU, self).__init__() | |
self.GRU_stack = nn.GRU(hp.data.nmels, hp.model.hidden, num_layers=hp.model.num_layer, batch_first=True) | |
for name, param in self.GRU_stack.named_parameters(): | |
if 'bias' in name: | |
nn.init.constant_(param, 0.0) | |
elif 'weight' in name: | |
nn.init.xavier_normal_(param) | |
self.projection = nn.Linear(hp.model.hidden, hp.model.proj) | |
def forward(self, x): | |
x, _ = self.GRU_stack(x.float()) #(batch, frames, n_mels) | |
#only use last frame | |
x = x[:,x.size(1)-1] | |
x = self.projection(x.float()) | |
x = x / torch.norm(x, dim=1).unsqueeze(1) | |
return x | |
class SpeechEmbedderKAN(nn.Module): | |
def __init__(self): | |
super(SpeechEmbedderKAN, self).__init__() | |
self.LSTM_stack = nn.LSTM(hp.data.nmels, hp.model.hidden, num_layers=hp.model.num_layer, batch_first=True) | |
for name, param in self.LSTM_stack.named_parameters(): | |
if 'bias' in name: | |
nn.init.constant_(param, 0.0) | |
elif 'weight' in name: | |
nn.init.xavier_normal_(param) | |
self.projection = KANLinear(hp.model.hidden, hp.model.proj) | |
def forward(self, x): | |
x, _ = self.LSTM_stack(x.float()) #(batch, frames, n_mels) | |
#only use last frame | |
x = x[:,x.size(1)-1] | |
x = self.projection(x.float()) | |
x = x / torch.norm(x, dim=1).unsqueeze(1) | |
return x | |
class SpeechEmbedderBidirectional(nn.Module): | |
def __init__(self): | |
super(SpeechEmbedderBidirectional, self).__init__() | |
self.LSTM_stack = nn.LSTM(hp.data.nmels, hp.model.hidden, num_layers=hp.model.num_layer, batch_first=True, bidirectional=True) | |
for name, param in self.LSTM_stack.named_parameters(): | |
if 'bias' in name: | |
nn.init.constant_(param, 0.0) | |
elif 'weight' in name: | |
nn.init.xavier_normal_(param) | |
self.projection = nn.Linear(hp.model.hidden, hp.model.proj) | |
def forward(self, x): | |
x, _ = self.LSTM_stack(x.float()) #(batch, frames, n_mels) | |
#only use last frame | |
x = x[:, :, :hp.model.hidden] | |
x = x[:,x.size(1)-1] | |
x = self.projection(x.float()) | |
x = x / torch.norm(x, dim=1).unsqueeze(1) | |
return x | |
class GE2ELoss(nn.Module): | |
def __init__(self, device): | |
super(GE2ELoss, self).__init__() | |
self.w = nn.Parameter(torch.tensor(10.0).to(device), requires_grad=True) | |
self.b = nn.Parameter(torch.tensor(-5.0).to(device), requires_grad=True) | |
self.device = device | |
def forward(self, embeddings): | |
torch.clamp(self.w, 1e-6) | |
centroids = get_centroids(embeddings) | |
cossim = get_cossim(embeddings, centroids) | |
sim_matrix = self.w*cossim.to(self.device) + self.b | |
loss, _ = calc_loss(sim_matrix) | |
return loss | |