# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import paddle from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput class DDIMPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @paddle.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, eta: float = 0.0, num_inference_steps: int = 50, use_clipped_model_output: Optional[bool] = None, output_type: Optional[str] = "pil", return_dict: bool = True, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`paddle.Generator`, *optional*): One or a list of paddle generator(s) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. use_clipped_model_output (`bool`, *optional*, defaults to `None`): if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed downstream to the scheduler. So use `None` for schedulers which don't support this argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop if isinstance(self.unet.sample_size, int): image_shape = (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size) else: image_shape = (batch_size, self.unet.in_channels, *self.unet.sample_size) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if isinstance(generator, list): shape = (1,) + image_shape[1:] image = [paddle.randn(shape, generator=generator[i], dtype=self.unet.dtype) for i in range(batch_size)] image = paddle.concat(image, axis=0) else: image = paddle.randn(image_shape, generator=generator, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step( model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator ).prev_sample image = (image / 2 + 0.5).clip(0, 1) image = image.transpose([0, 2, 3, 1]).cast("float32").numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)