import os import gradio as gr import logging from groq import Groq from sentence_transformers import SentenceTransformer import faiss import numpy as np import PyPDF2 from sklearn.metrics.pairwise import cosine_similarity from collections import Counter # --------------------- Setup --------------------- logging.basicConfig( filename='query_logs.log', level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s' ) GROQ_API_KEY = "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" client = Groq(api_key=GROQ_API_KEY) PDF_PATH = 'Robert Ciesla - The Book of Chatbots_ From ELIZA to ChatGPT-Springer (2024).pdf' sentence_transformer_model = SentenceTransformer('all-MiniLM-L6-v2') cache = {} # --------------------- Vectorization Function --------------------- def vectorize_text(sentences_with_pages): """Vectorize sentences using SentenceTransformer and create a FAISS index.""" try: sentences = [item['sentence'] for item in sentences_with_pages] embeddings = sentence_transformer_model.encode(sentences, show_progress_bar=True) index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(np.array(embeddings)) logging.info(f"Added {len(sentences)} sentences to the vector store.") return index, sentences_with_pages except Exception as e: logging.error(f"Error during vectorization: {str(e)}") return None, None # --------------------- PDF Processing --------------------- def read_pdf(file_path): if not os.path.exists(file_path): logging.error(f"PDF file not found at: {file_path}") return [] sentences_with_pages = [] with open(file_path, 'rb') as file: reader = PyPDF2.PdfReader(file) for page_num, page in enumerate(reader.pages): text = page.extract_text() if text: sentences = [sentence.strip() for sentence in text.split('\n') if sentence.strip()] for sentence in sentences: sentences_with_pages.append({'sentence': sentence, 'page_number': page_num + 1}) return sentences_with_pages # Read and Vectorize PDF Content sentences_with_pages = read_pdf(PDF_PATH) vector_index, sentences_with_pages = vectorize_text(sentences_with_pages) # --------------------- Query Handling --------------------- def generate_query_embedding(query): return sentence_transformer_model.encode([query]) def is_query_relevant(distances, threshold=1.0): return distances[0][0] <= threshold def generate_diverse_responses(prompt, n=3): responses = [] for i in range(n): temperature = 0.7 + (i * 0.1) top_p = 0.9 - (i * 0.1) try: chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": prompt}], model="llama3-8b-8192", temperature=temperature, top_p=top_p ) responses.append(chat_completion.choices[0].message.content.strip()) except Exception as e: logging.error(f"Error generating response: {str(e)}") responses.append("Error generating this response.") return responses def aggregate_responses(responses): response_counter = Counter(responses) most_common_response, count = response_counter.most_common(1)[0] if count > 1: return most_common_response else: embeddings = sentence_transformer_model.encode(responses) avg_embedding = np.mean(embeddings, axis=0) similarities = cosine_similarity([avg_embedding], embeddings)[0] return responses[np.argmax(similarities)] def generate_answer(query): if query in cache: logging.info(f"Cache hit for query: {query}") return cache[query] try: query_embedding = generate_query_embedding(query) D, I = vector_index.search(np.array(query_embedding), k=5) if is_query_relevant(D): relevant_items = [sentences_with_pages[i] for i in I[0]] combined_text = " ".join([item['sentence'] for item in relevant_items]) page_numbers = sorted(set([item['page_number'] for item in relevant_items])) page_numbers_str = ', '.join(map(str, page_numbers)) # Construct primary prompt prompt = f""" Use the following context from "The Book of Chatbots" to answer the question. If additional explanation is needed, provide an example. **Context (Pages {page_numbers_str}):** {combined_text} **User's question:** {query} **Remember to indicate the specific page numbers.** """ primary_responses = generate_diverse_responses(prompt) primary_answer = aggregate_responses(primary_responses) # Construct additional prompt for explanations explanation_prompt = f""" The user has a question about a complex topic. Could you provide an explanation or example and real-life example for better understanding? **User's question:** {query} **Primary answer:** {primary_answer} """ explanation_responses = generate_diverse_responses(explanation_prompt) explanation_answer = aggregate_responses(explanation_responses) # Combine primary answer and explanation full_response = f"{primary_answer}\n\n{explanation_answer}\n\n_From 'The Book of Chatbots,' pages {page_numbers_str}_" cache[query] = full_response logging.info(f"Generated response for query: {query}") return full_response else: # General knowledge fallback prompt = f""" The user asked a question that is not covered in "The Book of Chatbots." Please provide a helpful answer using general knowledge. **User's question:** {query} """ fallback_responses = generate_diverse_responses(prompt) fallback_answer = aggregate_responses(fallback_responses) cache[query] = fallback_answer return fallback_answer except Exception as e: logging.error(f"Error generating answer: {str(e)}") return "Sorry, an error occurred while generating the answer." # --------------------- Gradio Interface --------------------- def gradio_interface(user_query, history): response = generate_answer(user_query) history = history or [] history.append({"role": "user", "content": user_query}) history.append({"role": "assistant", "content": response}) return history, history # Create the Gradio interface with gr.Blocks(css=".gradio-container {background-color: #f0f0f0}") as iface: gr.Markdown(""" # **The Book of Chatbot** *Dive into the evolution of chatbots from ELIZA to ChatGPT with Chatbot Chronicles. Ask any question and explore the fascinating world of conversational AI as presented in Robert Ciesla's "The Book of Chatbots.* """) chatbot = gr.Chatbot(height=500, type='messages') state = gr.State([]) with gr.Row(): txt = gr.Textbox( show_label=False, placeholder="Type your message here and press Enter", container=False ) submit_btn = gr.Button("Send") def submit_message(user_query, history): history = history or [] history.append({"role": "user", "content": user_query}) return "", history def bot_response(history): user_query = history[-1]['content'] response = generate_answer(user_query) history.append({"role": "assistant", "content": response}) return history txt.submit(submit_message, [txt, state], [txt, state], queue=False).then( bot_response, state, chatbot ) submit_btn.click(submit_message, [txt, state], [txt, state], queue=False).then( bot_response, state, chatbot ) reset_btn = gr.Button("Reset Chat") reset_btn.click(lambda: ([], []), outputs=[chatbot, state], queue=False) # Launch the Gradio app if __name__ == "__main__": iface.launch()