2001muhammadumair's picture
Update app.py
c0437d5 verified
raw
history blame
7.9 kB
import os
import gradio as gr
import logging
from groq import Groq
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import PyPDF2
from sklearn.metrics.pairwise import cosine_similarity
from collections import Counter
# -------------------- Setup ---------------------
logging.basicConfig(
filename='query_logs.log',
level=logging.INFO,
format='%(asctime)s:%(levelname)s:%(message)s'
)
GROQ_API_KEY = "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"
client = Groq(api_key=GROQ_API_KEY)
PDF_PATH = 'Generative_AI_Foundations_in_Python_Discover_key_techniques_and.pdf'
sentence_transformer_model = SentenceTransformer('all-MiniLM-L6-v2')
cache = {}
# --------------------- Vectorization Function ---------------------
def vectorize_text(sentences_with_pages):
"""Vectorize sentences using SentenceTransformer and create a FAISS index."""
try:
sentences = [item['sentence'] for item in sentences_with_pages]
embeddings = sentence_transformer_model.encode(sentences, show_progress_bar=True)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(np.array(embeddings))
logging.info(f"Added {len(sentences)} sentences to the vector store.")
return index, sentences_with_pages
except Exception as e:
logging.error(f"Error during vectorization: {str(e)}")
return None, None
# --------------------- PDF Processing ---------------------
def read_pdf(file_path):
if not os.path.exists(file_path):
logging.error(f"PDF file not found at: {file_path}")
return []
sentences_with_pages = []
with open(file_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page_num, page in enumerate(reader.pages):
text = page.extract_text()
if text:
sentences = [sentence.strip() for sentence in text.split('\n') if sentence.strip()]
for sentence in sentences:
sentences_with_pages.append({'sentence': sentence, 'page_number': page_num + 1})
return sentences_with_pages
# Read and Vectorize PDF Content
sentences_with_pages = read_pdf(PDF_PATH)
vector_index, sentences_with_pages = vectorize_text(sentences_with_pages)
# --------------------- Query Handling ---------------------
def generate_query_embedding(query):
return sentence_transformer_model.encode([query])
def is_query_relevant(distances, threshold=1.0):
return distances[0][0] <= threshold
def generate_diverse_responses(prompt, n=3):
responses = []
for i in range(n):
temperature = 0.7 + (i * 0.1)
top_p = 0.9 - (i * 0.1)
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama3-8b-8192",
temperature=temperature,
top_p=top_p
)
responses.append(chat_completion.choices[0].message.content.strip())
except Exception as e:
logging.error(f"Error generating response: {str(e)}")
responses.append("Error generating this response.")
return responses
def aggregate_responses(responses):
response_counter = Counter(responses)
most_common_response, count = response_counter.most_common(1)[0]
if count > 1:
return most_common_response
else:
embeddings = sentence_transformer_model.encode(responses)
avg_embedding = np.mean(embeddings, axis=0)
similarities = cosine_similarity([avg_embedding], embeddings)[0]
return responses[np.argmax(similarities)]
def generate_answer(query):
if query in cache:
logging.info(f"Cache hit for query: {query}")
return cache[query]
try:
query_embedding = generate_query_embedding(query)
D, I = vector_index.search(np.array(query_embedding), k=5)
if is_query_relevant(D):
relevant_items = [sentences_with_pages[i] for i in I[0]]
combined_text = " ".join([item['sentence'] for item in relevant_items])
page_numbers = sorted(set([item['page_number'] for item in relevant_items]))
page_numbers_str = ', '.join(map(str, page_numbers))
# Construct primary prompt
prompt = f"""
Use the following context from "Generative AI Foundations" to answer the question. If additional explanation is needed, provide an example.
**Context (Pages {page_numbers_str}):**
{combined_text}
**User's question:**
{query}
**Remember to indicate the specific page numbers.**
"""
primary_responses = generate_diverse_responses(prompt)
primary_answer = aggregate_responses(primary_responses)
# Construct additional prompt for explanations
explanation_prompt = f"""
The user has a question about a complex topic. Could you provide an explanation or example for better understanding?
**User's question:**
{query}
**Primary answer:**
{primary_answer}
"""
explanation_responses = generate_diverse_responses(explanation_prompt)
explanation_answer = aggregate_responses(explanation_responses)
# Combine primary answer and explanation
full_response = f"{primary_answer}\n\n{explanation_answer}\n\n_From 'Generative AI Foundations,' pages {page_numbers_str}_"
cache[query] = full_response
logging.info(f"Generated response for query: {query}")
return full_response
else:
# General knowledge fallback
prompt = f"""
The user asked a question that is not covered in "Generative AI Foundations." Please provide a helpful answer using general knowledge.
**User's question:**
{query}
"""
fallback_responses = generate_diverse_responses(prompt)
fallback_answer = aggregate_responses(fallback_responses)
cache[query] = fallback_answer
return fallback_answer
except Exception as e:
logging.error(f"Error generating answer: {str(e)}")
return "Sorry, an error occurred while generating the answer."
# --------------------- Gradio Interface ---------------------
def gradio_interface(user_query, history):
response = generate_answer(user_query)
history = history or []
history.append({"role": "user", "content": user_query})
history.append({"role": "assistant", "content": response})
return history, history
# Create the Gradio interface
with gr.Blocks(css=".gradio-container {background-color: #f0f0f0}") as iface:
gr.Markdown("""
# **Generative AI Foundations Assistant**
*Explore insights and get explanations with real-life examples from "Generative AI Foundations in Python".*
""")
chatbot = gr.Chatbot(height=500, type='messages')
state = gr.State([])
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message here and press Enter",
container=False
)
submit_btn = gr.Button("Send")
def submit_message(user_query, history):
history = history or []
history.append({"role": "user", "content": user_query})
return "", history
def bot_response(history):
user_query = history[-1]['content']
response = generate_answer(user_query)
history.append({"role": "assistant", "content": response})
return history
txt.submit(submit_message, [txt, state], [txt, state], queue=False).then(
bot_response, state, chatbot
)
submit_btn.click(submit_message, [txt, state], [txt, state], queue=False).then(
bot_response, state, chatbot
)
reset_btn = gr.Button("Reset Chat")
reset_btn.click(lambda: ([], []), outputs=[chatbot, state], queue=False)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()