Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from groq import Groq
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
import PyPDF2
|
8 |
+
|
9 |
+
# Grog API key (Use environment variable or replace it with your actual API key)
|
10 |
+
grog_api_key = "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"
|
11 |
+
|
12 |
+
# Initialize groq API client
|
13 |
+
client = Groq(api_key=grog_api_key)
|
14 |
+
|
15 |
+
# Path to the already uploaded book
|
16 |
+
book_path = 'Generative_AI_Foundations_in_Python_Discover_key_techniques_and.pdf'
|
17 |
+
|
18 |
+
# Check if the file exists
|
19 |
+
if os.path.exists(book_path):
|
20 |
+
print(f"Book found at: {book_path}")
|
21 |
+
else:
|
22 |
+
print("Book not found!")
|
23 |
+
|
24 |
+
# Function to read the PDF file
|
25 |
+
def read_pdf(file_path):
|
26 |
+
with open(file_path, 'rb') as file:
|
27 |
+
reader = PyPDF2.PdfReader(file)
|
28 |
+
number_of_pages = len(reader.pages)
|
29 |
+
text = ""
|
30 |
+
for page_num in range(number_of_pages):
|
31 |
+
page = reader.pages[page_num]
|
32 |
+
text += page.extract_text()
|
33 |
+
return text
|
34 |
+
|
35 |
+
# Read the PDF content
|
36 |
+
book_text = read_pdf(book_path)
|
37 |
+
print(book_text[:1000]) # Print first 1000 characters of the book for verification
|
38 |
+
|
39 |
+
# Vectorization of the extracted PDF content
|
40 |
+
def vectorize_text(text):
|
41 |
+
try:
|
42 |
+
# Use Sentence Transformer to create embeddings
|
43 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
44 |
+
sentences = text.split('\n') # Split text into sentences for vectorization
|
45 |
+
embeddings = model.encode(sentences, show_progress_bar=True)
|
46 |
+
|
47 |
+
# Create FAISS index for similarity search
|
48 |
+
index = faiss.IndexFlatL2(embeddings.shape[1]) # L2 distance index
|
49 |
+
index.add(np.array(embeddings)) # Add embeddings to the index
|
50 |
+
print(f"Added {len(sentences)} sentences to the vector store.")
|
51 |
+
|
52 |
+
return index, sentences
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error during vectorization: {str(e)}")
|
55 |
+
return None, None
|
56 |
+
|
57 |
+
# Vectorize the extracted PDF text
|
58 |
+
vector_index, sentences = vectorize_text(book_text)
|
59 |
+
|
60 |
+
# Check if the vectorization was successful
|
61 |
+
if vector_index:
|
62 |
+
print("Vectorization complete.")
|
63 |
+
else:
|
64 |
+
print("Vectorization failed.")
|
65 |
+
|
66 |
+
# Function to generate embeddings for the query using the SentenceTransformer
|
67 |
+
def generate_query_embedding(query, sentence_transformer_model):
|
68 |
+
return sentence_transformer_model.encode([query])
|
69 |
+
|
70 |
+
# Function to generate answers using the grog API with Llama model
|
71 |
+
def generate_answer_with_grog(query, vector_index, sentences, sentence_transformer_model):
|
72 |
+
try:
|
73 |
+
# Get the query embedding using the sentence transformer
|
74 |
+
query_embedding = generate_query_embedding(query, sentence_transformer_model)
|
75 |
+
|
76 |
+
# Perform similarity search on the vector store (vector index)
|
77 |
+
D, I = vector_index.search(np.array(query_embedding), k=5) # Find top 5 similar sentences
|
78 |
+
|
79 |
+
# Retrieve the most relevant sentences
|
80 |
+
relevant_sentences = [sentences[i] for i in I[0]]
|
81 |
+
|
82 |
+
# Combine the relevant sentences for the final query
|
83 |
+
combined_text = " ".join(relevant_sentences)
|
84 |
+
|
85 |
+
# Use groq API to generate the response
|
86 |
+
chat_completion = client.chat.completions.create(
|
87 |
+
messages=[{
|
88 |
+
"role": "user",
|
89 |
+
"content": combined_text,
|
90 |
+
}],
|
91 |
+
model="llama3-8b-8192",
|
92 |
+
)
|
93 |
+
|
94 |
+
# Extract and return the response content from the grog API
|
95 |
+
response = chat_completion.choices[0].message.content
|
96 |
+
return response
|
97 |
+
except Exception as e:
|
98 |
+
return f"Error during answer generation with grog API: {str(e)}"
|
99 |
+
|
100 |
+
# Gradio app function
|
101 |
+
def gradio_interface(query):
|
102 |
+
global vector_index, sentences
|
103 |
+
|
104 |
+
# Initialize the sentence transformer model
|
105 |
+
sentence_transformer_model = SentenceTransformer('all-MiniLM-L6-v2')
|
106 |
+
|
107 |
+
if vector_index is None or sentences is None:
|
108 |
+
return "Vector index or sentences not initialized properly."
|
109 |
+
|
110 |
+
# Generate the answer using the grog API and Llama model
|
111 |
+
answer = generate_answer_with_grog(query, vector_index, sentences, sentence_transformer_model)
|
112 |
+
return answer
|
113 |
+
|
114 |
+
# Create the Gradio interface
|
115 |
+
iface = gr.Interface(
|
116 |
+
fn=gradio_interface,
|
117 |
+
inputs="text",
|
118 |
+
outputs="text",
|
119 |
+
title="Generative_AI_Foundations_in_Python PDF-based Query Answering",
|
120 |
+
description="Ask any question about the content in the uploaded PDF and receive answers generated by Grog API with Llama model."
|
121 |
+
)
|
122 |
+
|
123 |
+
# Launch the Gradio app
|
124 |
+
if __name__ == "__main__":
|
125 |
+
iface.launch()
|