|
from typing import Optional, Tuple, List |
|
import math |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch.nn import Linear, Module |
|
from torch.nn import functional as F |
|
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ |
|
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear |
|
from torch.nn.parameter import Parameter |
|
|
|
def _in_projection_packed( |
|
q: Tensor, |
|
k: Tensor, |
|
v: Tensor, |
|
w: Tensor, |
|
b: Optional[Tensor] = None, |
|
) -> List[Tensor]: |
|
r""" |
|
Performs the in-projection step of the attention operation, using packed weights. |
|
Output is a triple containing projection tensors for query, key and value. |
|
|
|
Args: |
|
q, k, v: query, key and value tensors to be projected. For self-attention, |
|
these are typically the same tensor; for encoder-decoder attention, |
|
k and v are typically the same tensor. (We take advantage of these |
|
identities for performance if they are present.) Regardless, q, k and v |
|
must share a common embedding dimension; otherwise their shapes may vary. |
|
w: projection weights for q, k and v, packed into a single tensor. Weights |
|
are packed along dimension 0, in q, k, v order. |
|
b: optional projection biases for q, k and v, packed into a single tensor |
|
in q, k, v order. |
|
|
|
Shape: |
|
Inputs: |
|
- q: :math:`(..., E)` where E is the embedding dimension |
|
- k: :math:`(..., E)` where E is the embedding dimension |
|
- v: :math:`(..., E)` where E is the embedding dimension |
|
- w: :math:`(E * 3, E)` where E is the embedding dimension |
|
- b: :math:`E * 3` where E is the embedding dimension |
|
|
|
Output: |
|
- in output list :math:`[q', k', v']`, each output tensor will have the |
|
same shape as the corresponding input tensor. |
|
""" |
|
E = q.size(-1) |
|
if k is v: |
|
if q is k: |
|
|
|
return F.linear(q, w, b).chunk(3, dim=-1) |
|
else: |
|
|
|
w_q, w_kv = w.split([E, E * 2]) |
|
if b is None: |
|
b_q = b_kv = None |
|
else: |
|
b_q, b_kv = b.split([E, E * 2]) |
|
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1) |
|
else: |
|
w_q, w_k, w_v = w.chunk(3) |
|
if b is None: |
|
b_q = b_k = b_v = None |
|
else: |
|
b_q, b_k, b_v = b.chunk(3) |
|
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) |
|
|
|
def _scaled_dot_product_attention( |
|
q: Tensor, |
|
k: Tensor, |
|
v: Tensor, |
|
attn_mask: Optional[Tensor] = None, |
|
dropout_p: float = 0.0, |
|
) -> Tuple[Tensor, Tensor]: |
|
r""" |
|
Computes scaled dot product attention on query, key and value tensors, using |
|
an optional attention mask if passed, and applying dropout if a probability |
|
greater than 0.0 is specified. |
|
Returns a tensor pair containing attended values and attention weights. |
|
|
|
Args: |
|
q, k, v: query, key and value tensors. See Shape section for shape details. |
|
attn_mask: optional tensor containing mask values to be added to calculated |
|
attention. May be 2D or 3D; see Shape section for details. |
|
dropout_p: dropout probability. If greater than 0.0, dropout is applied. |
|
|
|
Shape: |
|
- q: :math:`(B, Nt, E)` where B is batch size, Nt is the target sequence length, |
|
and E is embedding dimension. |
|
- key: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length, |
|
and E is embedding dimension. |
|
- value: :math:`(B, Ns, E)` where B is batch size, Ns is the source sequence length, |
|
and E is embedding dimension. |
|
- attn_mask: either a 3D tensor of shape :math:`(B, Nt, Ns)` or a 2D tensor of |
|
shape :math:`(Nt, Ns)`. |
|
|
|
- Output: attention values have shape :math:`(B, Nt, E)`; attention weights |
|
have shape :math:`(B, Nt, Ns)` |
|
""" |
|
B, Nt, E = q.shape |
|
q = q / math.sqrt(E) |
|
|
|
if attn_mask is not None: |
|
attn = torch.baddbmm(attn_mask, q, k.transpose(-2, -1)) |
|
else: |
|
attn = torch.bmm(q, k.transpose(-2, -1)) |
|
|
|
attn = F.softmax(attn, dim=-1) |
|
if dropout_p > 0.0: |
|
attn = F.dropout(attn, p=dropout_p) |
|
|
|
output = torch.bmm(attn, v) |
|
return output, attn |
|
|
|
def multi_head_attention_forward( |
|
x, |
|
ipw, |
|
ipb, |
|
opw, |
|
opb, |
|
n_head, |
|
attn_mask, |
|
past_kv=None, |
|
use_cache=False, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B, T, C = x.size() |
|
|
|
q, k, v = torch._C._nn.linear(x, ipw, ipb).chunk(3, dim=-1) |
|
k = k.view(B, T, n_head, C // n_head).transpose(1, 2) |
|
q = q.view(B, T, n_head, C // n_head).transpose(1, 2) |
|
v = v.view(B, T, n_head, C // n_head).transpose(1, 2) |
|
if past_kv is not None: |
|
past_key = past_kv[0] |
|
past_value = past_kv[1] |
|
k = torch.cat((past_key, k), dim=-2) |
|
v = torch.cat((past_value, v), dim=-2) |
|
|
|
FULL_T = k.shape[-2] |
|
|
|
if use_cache is True: |
|
present = (k, v) |
|
else: |
|
present = None |
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(attn_mask[FULL_T - T:FULL_T, :FULL_T], float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
y = torch._C._nn.linear(y, opw, opb) |
|
return (y, present) |
|
|
|
|
|
class MultiheadAttention(Module): |
|
r"""Allows the model to jointly attend to information |
|
from different representation subspaces as described in the paper: |
|
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_. |
|
|
|
Multi-Head Attention is defined as: |
|
|
|
.. math:: |
|
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O |
|
|
|
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. |
|
|
|
``forward()`` will use a special optimized implementation if all of the following |
|
conditions are met: |
|
|
|
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This |
|
restriction will be loosened in the future.) |
|
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad`` |
|
- training is disabled (using ``.eval()``) |
|
- dropout is 0 |
|
- ``add_bias_kv`` is ``False`` |
|
- ``add_zero_attn`` is ``False`` |
|
- ``batch_first`` is ``True`` and the input is batched |
|
- ``kdim`` and ``vdim`` are equal to ``embed_dim`` |
|
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed |
|
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask`` |
|
nor ``attn_mask`` is passed |
|
|
|
If the optimized implementation is in use, a |
|
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for |
|
``query``/``key``/``value`` to represent padding more efficiently than using a |
|
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ |
|
will be returned, and an additional speedup proportional to the fraction of the input |
|
that is padding can be expected. |
|
|
|
Args: |
|
embed_dim: Total dimension of the model. |
|
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split |
|
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``). |
|
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout). |
|
bias: If specified, adds bias to input / output projection layers. Default: ``True``. |
|
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``. |
|
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1. |
|
Default: ``False``. |
|
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``). |
|
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``). |
|
batch_first: If ``True``, then the input and output tensors are provided |
|
as (batch, seq, feature). Default: ``False`` (seq, batch, feature). |
|
|
|
Examples:: |
|
|
|
>>> # xdoctest: +SKIP |
|
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) |
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value) |
|
|
|
""" |
|
__constants__ = ["batch_first"] |
|
bias_k: Optional[torch.Tensor] |
|
bias_v: Optional[torch.Tensor] |
|
|
|
def __init__( |
|
self, |
|
embed_dim, |
|
num_heads, |
|
dropout=0.0, |
|
bias=True, |
|
add_bias_kv=False, |
|
add_zero_attn=False, |
|
kdim=None, |
|
vdim=None, |
|
batch_first=False, |
|
linear1_cls=Linear, |
|
linear2_cls=Linear, |
|
device=None, |
|
dtype=None, |
|
) -> None: |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super(MultiheadAttention, self).__init__() |
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self._qkv_same_embed_dim = ( |
|
self.kdim == embed_dim and self.vdim == embed_dim |
|
) |
|
|
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.batch_first = batch_first |
|
self.head_dim = embed_dim // num_heads |
|
assert ( |
|
self.head_dim * num_heads == self.embed_dim |
|
), "embed_dim must be divisible by num_heads" |
|
|
|
if add_bias_kv: |
|
self.bias_k = Parameter( |
|
torch.empty((1, 1, embed_dim), **factory_kwargs) |
|
) |
|
self.bias_v = Parameter( |
|
torch.empty((1, 1, embed_dim), **factory_kwargs) |
|
) |
|
else: |
|
self.bias_k = self.bias_v = None |
|
|
|
if linear1_cls == Linear: |
|
if not self._qkv_same_embed_dim: |
|
self.q_proj_weight = Parameter( |
|
torch.empty((embed_dim, embed_dim), **factory_kwargs) |
|
) |
|
self.k_proj_weight = Parameter( |
|
torch.empty((embed_dim, self.kdim), **factory_kwargs) |
|
) |
|
self.v_proj_weight = Parameter( |
|
torch.empty((embed_dim, self.vdim), **factory_kwargs) |
|
) |
|
self.register_parameter("in_proj_weight", None) |
|
else: |
|
self.in_proj_weight = Parameter( |
|
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs) |
|
) |
|
self.register_parameter("q_proj_weight", None) |
|
self.register_parameter("k_proj_weight", None) |
|
self.register_parameter("v_proj_weight", None) |
|
|
|
if bias: |
|
self.in_proj_bias = Parameter( |
|
torch.empty(3 * embed_dim, **factory_kwargs) |
|
) |
|
else: |
|
self.register_parameter("in_proj_bias", None) |
|
self.out_proj = NonDynamicallyQuantizableLinear( |
|
embed_dim, embed_dim, bias=bias, **factory_kwargs |
|
) |
|
|
|
self._reset_parameters() |
|
else: |
|
if not self._qkv_same_embed_dim: |
|
raise NotImplementedError |
|
else: |
|
self.in_proj_linear = linear1_cls( |
|
embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs |
|
) |
|
self.in_proj_weight = self.in_proj_linear.weight |
|
|
|
self.register_parameter("q_proj_weight", None) |
|
self.register_parameter("k_proj_weight", None) |
|
self.register_parameter("v_proj_weight", None) |
|
|
|
if bias: |
|
self.in_proj_bias = self.in_proj_linear.bias |
|
else: |
|
self.register_parameter("in_proj_bias", None) |
|
|
|
self.out_proj = linear2_cls( |
|
embed_dim, embed_dim, bias=bias, **factory_kwargs |
|
) |
|
|
|
if self.bias_k is not None: |
|
xavier_normal_(self.bias_k) |
|
if self.bias_v is not None: |
|
xavier_normal_(self.bias_v) |
|
|
|
self.add_zero_attn = add_zero_attn |
|
|
|
def _reset_parameters(self): |
|
if self._qkv_same_embed_dim: |
|
xavier_uniform_(self.in_proj_weight) |
|
else: |
|
xavier_uniform_(self.q_proj_weight) |
|
xavier_uniform_(self.k_proj_weight) |
|
xavier_uniform_(self.v_proj_weight) |
|
|
|
if self.in_proj_bias is not None: |
|
constant_(self.in_proj_bias, 0.0) |
|
constant_(self.out_proj.bias, 0.0) |
|
|
|
if self.bias_k is not None: |
|
xavier_normal_(self.bias_k) |
|
if self.bias_v is not None: |
|
xavier_normal_(self.bias_v) |
|
|
|
def __setstate__(self, state): |
|
|
|
if "_qkv_same_embed_dim" not in state: |
|
state["_qkv_same_embed_dim"] = True |
|
|
|
super(MultiheadAttention, self).__setstate__(state) |
|
|
|
def forward( |
|
self, |
|
query: Tensor, |
|
key: Tensor, |
|
value: Tensor, |
|
key_padding_mask: Optional[Tensor] = None, |
|
need_weights: bool = True, |
|
attn_mask: Optional[Tensor] = None, |
|
average_attn_weights: bool = True, |
|
) -> Tuple[Tensor, Optional[Tensor]]: |
|
r""" |
|
Args: |
|
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False`` |
|
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length, |
|
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``. |
|
Queries are compared against key-value pairs to produce the output. |
|
See "Attention Is All You Need" for more details. |
|
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False`` |
|
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length, |
|
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``. |
|
See "Attention Is All You Need" for more details. |
|
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when |
|
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source |
|
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``. |
|
See "Attention Is All You Need" for more details. |
|
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key`` |
|
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`. |
|
Binary and byte masks are supported. |
|
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for |
|
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value. |
|
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``. |
|
Default: ``True``. |
|
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape |
|
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size, |
|
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be |
|
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch. |
|
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the |
|
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the |
|
corresponding position is not allowed to attend. For a float mask, the mask values will be added to |
|
the attention weight. |
|
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across |
|
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an |
|
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads) |
|
|
|
Outputs: |
|
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched, |
|
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``, |
|
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the |
|
embedding dimension ``embed_dim``. |
|
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``, |
|
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or |
|
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and |
|
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per |
|
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`. |
|
|
|
.. note:: |
|
`batch_first` argument is ignored for unbatched inputs. |
|
""" |
|
is_batched = query.dim() == 3 |
|
if key_padding_mask is not None: |
|
_kpm_dtype = key_padding_mask.dtype |
|
if _kpm_dtype != torch.bool and not torch.is_floating_point( |
|
key_padding_mask |
|
): |
|
raise AssertionError( |
|
"only bool and floating types of key_padding_mask are supported" |
|
) |
|
why_not_fast_path = "" |
|
if not is_batched: |
|
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}" |
|
elif query is not key or key is not value: |
|
|
|
|
|
|
|
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)" |
|
elif ( |
|
self.in_proj_bias is not None |
|
and query.dtype != self.in_proj_bias.dtype |
|
): |
|
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match" |
|
elif ( |
|
self.in_proj_weight is not None |
|
and query.dtype != self.in_proj_weight.dtype |
|
): |
|
|
|
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match" |
|
elif self.training: |
|
why_not_fast_path = "training is enabled" |
|
elif not self.batch_first: |
|
why_not_fast_path = "batch_first was not True" |
|
elif self.bias_k is not None: |
|
why_not_fast_path = "self.bias_k was not None" |
|
elif self.bias_v is not None: |
|
why_not_fast_path = "self.bias_v was not None" |
|
elif self.dropout: |
|
why_not_fast_path = f"dropout was {self.dropout}, required zero" |
|
elif self.add_zero_attn: |
|
why_not_fast_path = "add_zero_attn was enabled" |
|
elif not self._qkv_same_embed_dim: |
|
why_not_fast_path = "_qkv_same_embed_dim was not True" |
|
elif attn_mask is not None: |
|
why_not_fast_path = "attn_mask was not None" |
|
elif query.is_nested and key_padding_mask is not None: |
|
why_not_fast_path = ( |
|
"key_padding_mask is not supported with NestedTensor input" |
|
) |
|
elif self.num_heads % 2 == 1: |
|
why_not_fast_path = "num_heads is odd" |
|
elif torch.is_autocast_enabled(): |
|
why_not_fast_path = "autocast is enabled" |
|
|
|
if not why_not_fast_path: |
|
tensor_args = ( |
|
query, |
|
key, |
|
value, |
|
self.in_proj_weight, |
|
self.in_proj_bias, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
) |
|
|
|
|
|
if torch.overrides.has_torch_function(tensor_args): |
|
why_not_fast_path = "some Tensor argument has_torch_function" |
|
elif not all( |
|
[ |
|
(x is None or x.is_cuda or "cpu" in str(x.device)) |
|
for x in tensor_args |
|
] |
|
): |
|
why_not_fast_path = ( |
|
"some Tensor argument is neither CUDA nor CPU" |
|
) |
|
elif torch.is_grad_enabled() and any( |
|
[x is not None and x.requires_grad for x in tensor_args] |
|
): |
|
why_not_fast_path = ( |
|
"grad is enabled and at least one of query or the " |
|
"input/output projection weights or biases requires_grad" |
|
) |
|
if not why_not_fast_path: |
|
return torch._native_multi_head_attention( |
|
query, |
|
key, |
|
value, |
|
self.embed_dim, |
|
self.num_heads, |
|
self.in_proj_weight, |
|
self.in_proj_bias, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
key_padding_mask |
|
if key_padding_mask is not None |
|
else attn_mask, |
|
need_weights, |
|
average_attn_weights, |
|
1 |
|
if key_padding_mask is not None |
|
else 0 |
|
if attn_mask is not None |
|
else None, |
|
) |
|
|
|
any_nested = query.is_nested or key.is_nested or value.is_nested |
|
assert not any_nested, ( |
|
"MultiheadAttention does not support NestedTensor outside of its fast path. " |
|
+ f"The fast path was not hit because {why_not_fast_path}" |
|
) |
|
|
|
if self.batch_first and is_batched: |
|
|
|
if key is value: |
|
if query is key: |
|
query = key = value = query.transpose(1, 0) |
|
else: |
|
query, key = [x.transpose(1, 0) for x in (query, key)] |
|
value = key |
|
else: |
|
query, key, value = [ |
|
x.transpose(1, 0) for x in (query, key, value) |
|
] |
|
|
|
if not self._qkv_same_embed_dim: |
|
attn_output, attn_output_weights = F.multi_head_attention_forward( |
|
query, |
|
key, |
|
value, |
|
self.embed_dim, |
|
self.num_heads, |
|
self.in_proj_weight, |
|
self.in_proj_bias, |
|
self.bias_k, |
|
self.bias_v, |
|
self.add_zero_attn, |
|
self.dropout, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
training=self.training, |
|
key_padding_mask=key_padding_mask, |
|
need_weights=need_weights, |
|
attn_mask=attn_mask, |
|
use_separate_proj_weight=True, |
|
q_proj_weight=self.q_proj_weight, |
|
k_proj_weight=self.k_proj_weight, |
|
v_proj_weight=self.v_proj_weight, |
|
average_attn_weights=average_attn_weights, |
|
) |
|
else: |
|
attn_output, attn_output_weights = F.multi_head_attention_forward( |
|
query, |
|
key, |
|
value, |
|
self.embed_dim, |
|
self.num_heads, |
|
self.in_proj_weight, |
|
self.in_proj_bias, |
|
self.bias_k, |
|
self.bias_v, |
|
self.add_zero_attn, |
|
self.dropout, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
training=self.training, |
|
key_padding_mask=key_padding_mask, |
|
need_weights=need_weights, |
|
attn_mask=attn_mask, |
|
average_attn_weights=average_attn_weights, |
|
) |
|
if self.batch_first and is_batched: |
|
return attn_output.transpose(1, 0), attn_output_weights |
|
else: |
|
return attn_output, attn_output_weights |
|
|
|
def infer(self, |
|
x: Tensor, |
|
key_padding_mask: Optional[Tensor] = None, |
|
need_weights: bool = True, |
|
attn_mask: Optional[Tensor] = None, |
|
average_attn_weights: bool = True, |
|
past_kv = None, |
|
use_cache = False |
|
): |
|
|
|
y, kv = multi_head_attention_forward( |
|
x=x, |
|
ipw=self.in_proj_weight, |
|
ipb=self.in_proj_bias, |
|
opw=self.out_proj.weight, |
|
opb=self.out_proj.bias, |
|
n_head=self.num_heads, |
|
attn_mask=attn_mask, |
|
past_kv=past_kv, |
|
use_cache=use_cache, |
|
) |
|
return (y, kv) |
|
|