|
import argparse |
|
import logging |
|
import os |
|
import pathlib |
|
import time |
|
import tempfile |
|
import platform |
|
if platform.system().lower() == 'windows': |
|
temp = pathlib.PosixPath |
|
pathlib.PosixPath = pathlib.WindowsPath |
|
elif platform.system().lower() == 'linux': |
|
temp = pathlib.WindowsPath |
|
pathlib.WindowsPath = pathlib.PosixPath |
|
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" |
|
|
|
import langid |
|
langid.set_languages(['en', 'zh', 'ja']) |
|
|
|
import torch |
|
import torchaudio |
|
import random |
|
|
|
import numpy as np |
|
|
|
from data.tokenizer import ( |
|
AudioTokenizer, |
|
tokenize_audio, |
|
) |
|
from data.collation import get_text_token_collater |
|
from models.vallex import VALLE |
|
from utils.g2p import PhonemeBpeTokenizer |
|
from descriptions import * |
|
from macros import * |
|
from examples import * |
|
|
|
import gradio as gr |
|
import whisper |
|
|
|
torch._C._jit_set_profiling_executor(False) |
|
torch._C._jit_set_profiling_mode(False) |
|
torch._C._set_graph_executor_optimize(False) |
|
|
|
text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json") |
|
text_collater = get_text_token_collater() |
|
|
|
device = torch.device("cpu") |
|
|
|
|
|
|
|
|
|
model = VALLE( |
|
N_DIM, |
|
NUM_HEAD, |
|
NUM_LAYERS, |
|
norm_first=True, |
|
add_prenet=False, |
|
prefix_mode=PREFIX_MODE, |
|
share_embedding=True, |
|
nar_scale_factor=1.0, |
|
prepend_bos=True, |
|
num_quantizers=NUM_QUANTIZERS, |
|
).to(device) |
|
checkpoint = torch.load("./epoch-10.pt", map_location='cpu') |
|
missing_keys, unexpected_keys = model.load_state_dict( |
|
checkpoint["model"], strict=True |
|
) |
|
del checkpoint |
|
assert not missing_keys |
|
model.eval() |
|
|
|
|
|
audio_tokenizer = AudioTokenizer(device) |
|
|
|
|
|
whisper_model = whisper.load_model("medium").to(device) |
|
|
|
|
|
preset_list = os.walk("./presets/").__next__()[2] |
|
preset_list = [preset[:-4] for preset in preset_list if preset.endswith(".npz")] |
|
|
|
def clear_prompts(): |
|
try: |
|
path = tempfile.gettempdir() |
|
for eachfile in os.listdir(path): |
|
filename = os.path.join(path, eachfile) |
|
if os.path.isfile(filename) and filename.endswith(".npz"): |
|
lastmodifytime = os.stat(filename).st_mtime |
|
endfiletime = time.time() - 60 |
|
if endfiletime > lastmodifytime: |
|
os.remove(filename) |
|
except: |
|
return |
|
|
|
def transcribe_one(model, audio_path): |
|
|
|
audio = whisper.load_audio(audio_path) |
|
audio = whisper.pad_or_trim(audio) |
|
|
|
|
|
mel = whisper.log_mel_spectrogram(audio).to(model.device) |
|
|
|
|
|
_, probs = model.detect_language(mel) |
|
print(f"Detected language: {max(probs, key=probs.get)}") |
|
lang = max(probs, key=probs.get) |
|
|
|
options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, sample_len=150) |
|
result = whisper.decode(model, mel, options) |
|
|
|
|
|
print(result.text) |
|
|
|
text_pr = result.text |
|
if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": |
|
text_pr += "." |
|
return lang, text_pr |
|
|
|
def make_npz_prompt(name, uploaded_audio, recorded_audio, transcript_content): |
|
global model, text_collater, text_tokenizer, audio_tokenizer |
|
clear_prompts() |
|
audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio |
|
sr, wav_pr = audio_prompt |
|
if len(wav_pr) / sr > 15: |
|
return "Rejected, Audio too long (should be less than 15 seconds)", None |
|
if not isinstance(wav_pr, torch.FloatTensor): |
|
wav_pr = torch.FloatTensor(wav_pr) |
|
if wav_pr.abs().max() > 1: |
|
wav_pr /= wav_pr.abs().max() |
|
if wav_pr.size(-1) == 2: |
|
wav_pr = wav_pr[:, 0] |
|
if wav_pr.ndim == 1: |
|
wav_pr = wav_pr.unsqueeze(0) |
|
assert wav_pr.ndim and wav_pr.size(0) == 1 |
|
|
|
if transcript_content == "": |
|
text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False) |
|
else: |
|
lang_pr = langid.classify(str(transcript_content))[0] |
|
lang_token = lang2token[lang_pr] |
|
text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" |
|
|
|
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) |
|
audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() |
|
|
|
|
|
phonemes, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) |
|
text_tokens, enroll_x_lens = text_collater( |
|
[ |
|
phonemes |
|
] |
|
) |
|
|
|
message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" |
|
|
|
|
|
np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"), |
|
audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) |
|
return message, os.path.join(tempfile.gettempdir(), f"{name}.npz") |
|
|
|
|
|
def make_prompt(name, wav, sr, save=True): |
|
global whisper_model |
|
if not isinstance(wav, torch.FloatTensor): |
|
wav = torch.tensor(wav) |
|
if wav.abs().max() > 1: |
|
wav /= wav.abs().max() |
|
if wav.size(-1) == 2: |
|
wav = wav.mean(-1, keepdim=False) |
|
if wav.ndim == 1: |
|
wav = wav.unsqueeze(0) |
|
assert wav.ndim and wav.size(0) == 1 |
|
torchaudio.save(f"./prompts/{name}.wav", wav, sr) |
|
lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav") |
|
lang_token = lang2token[lang] |
|
text = lang_token + text + lang_token |
|
with open(f"./prompts/{name}.txt", 'w') as f: |
|
f.write(text) |
|
if not save: |
|
os.remove(f"./prompts/{name}.wav") |
|
os.remove(f"./prompts/{name}.txt") |
|
|
|
return text, lang |
|
|
|
@torch.no_grad() |
|
def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt, transcript_content): |
|
if len(text) > 150: |
|
return "Rejected, Text too long (should be less than 150 characters)", None |
|
global model, text_collater, text_tokenizer, audio_tokenizer |
|
audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt |
|
sr, wav_pr = audio_prompt |
|
if len(wav_pr) / sr > 15: |
|
return "Rejected, Audio too long (should be less than 15 seconds)", None |
|
if not isinstance(wav_pr, torch.FloatTensor): |
|
wav_pr = torch.FloatTensor(wav_pr) |
|
if wav_pr.abs().max() > 1: |
|
wav_pr /= wav_pr.abs().max() |
|
if wav_pr.size(-1) == 2: |
|
wav_pr = wav_pr[:, 0] |
|
if wav_pr.ndim == 1: |
|
wav_pr = wav_pr.unsqueeze(0) |
|
assert wav_pr.ndim and wav_pr.size(0) == 1 |
|
|
|
if transcript_content == "": |
|
text_pr, lang_pr = make_prompt('dummy', wav_pr, sr, save=False) |
|
else: |
|
lang_pr = langid.classify(str(transcript_content))[0] |
|
lang_token = lang2token[lang_pr] |
|
text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" |
|
|
|
if language == 'auto-detect': |
|
lang_token = lang2token[langid.classify(text)[0]] |
|
else: |
|
lang_token = langdropdown2token[language] |
|
lang = token2lang[lang_token] |
|
text = lang_token + text + lang_token |
|
|
|
|
|
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) |
|
audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device) |
|
|
|
|
|
logging.info(f"synthesize text: {text}") |
|
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) |
|
text_tokens, text_tokens_lens = text_collater( |
|
[ |
|
phone_tokens |
|
] |
|
) |
|
|
|
enroll_x_lens = None |
|
if text_pr: |
|
text_prompts, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) |
|
text_prompts, enroll_x_lens = text_collater( |
|
[ |
|
text_prompts |
|
] |
|
) |
|
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) |
|
text_tokens_lens += enroll_x_lens |
|
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] |
|
encoded_frames = model.inference( |
|
text_tokens.to(device), |
|
text_tokens_lens.to(device), |
|
audio_prompts, |
|
enroll_x_lens=enroll_x_lens, |
|
top_k=-100, |
|
temperature=1, |
|
prompt_language=lang_pr, |
|
text_language=langs if accent == "no-accent" else lang, |
|
) |
|
samples = audio_tokenizer.decode( |
|
[(encoded_frames.transpose(2, 1), None)] |
|
) |
|
|
|
message = f"text prompt: {text_pr}\nsythesized text: {text}" |
|
return message, (24000, samples[0][0].cpu().numpy()) |
|
|
|
@torch.no_grad() |
|
def infer_from_prompt(text, language, accent, preset_prompt, prompt_file): |
|
if len(text) > 150: |
|
return "Rejected, Text too long (should be less than 150 characters)", None |
|
clear_prompts() |
|
|
|
if language == 'auto-detect': |
|
lang_token = lang2token[langid.classify(text)[0]] |
|
else: |
|
lang_token = langdropdown2token[language] |
|
lang = token2lang[lang_token] |
|
text = lang_token + text + lang_token |
|
|
|
|
|
if prompt_file is not None: |
|
prompt_data = np.load(prompt_file.name) |
|
else: |
|
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) |
|
audio_prompts = prompt_data['audio_tokens'] |
|
text_prompts = prompt_data['text_tokens'] |
|
lang_pr = prompt_data['lang_code'] |
|
lang_pr = code2lang[int(lang_pr)] |
|
|
|
|
|
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) |
|
text_prompts = torch.tensor(text_prompts).type(torch.int32) |
|
|
|
enroll_x_lens = text_prompts.shape[-1] |
|
logging.info(f"synthesize text: {text}") |
|
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) |
|
text_tokens, text_tokens_lens = text_collater( |
|
[ |
|
phone_tokens |
|
] |
|
) |
|
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) |
|
text_tokens_lens += enroll_x_lens |
|
|
|
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] |
|
encoded_frames = model.inference( |
|
text_tokens.to(device), |
|
text_tokens_lens.to(device), |
|
audio_prompts, |
|
enroll_x_lens=enroll_x_lens, |
|
top_k=-100, |
|
temperature=1, |
|
prompt_language=lang_pr, |
|
text_language=langs if accent == "no-accent" else lang, |
|
) |
|
samples = audio_tokenizer.decode( |
|
[(encoded_frames.transpose(2, 1), None)] |
|
) |
|
|
|
message = f"sythesized text: {text}" |
|
return message, (24000, samples[0][0].cpu().numpy()) |
|
|
|
|
|
from utils.sentence_cutter import split_text_into_sentences |
|
@torch.no_grad() |
|
def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='no-accent'): |
|
""" |
|
For long audio generation, two modes are available. |
|
fixed-prompt: This mode will keep using the same prompt the user has provided, and generate audio sentence by sentence. |
|
sliding-window: This mode will use the last sentence as the prompt for the next sentence, but has some concern on speaker maintenance. |
|
""" |
|
if len(text) > 1000: |
|
return "Rejected, Text too long (should be less than 1000 characters)", None |
|
mode = 'fixed-prompt' |
|
global model, audio_tokenizer, text_tokenizer, text_collater |
|
if (prompt is None or prompt == "") and preset_prompt == "": |
|
mode = 'sliding-window' |
|
sentences = split_text_into_sentences(text) |
|
|
|
if language == "auto-detect": |
|
language = langid.classify(text)[0] |
|
else: |
|
language = token2lang[langdropdown2token[language]] |
|
|
|
|
|
if prompt is not None and prompt != "": |
|
|
|
prompt_data = np.load(prompt.name) |
|
audio_prompts = prompt_data['audio_tokens'] |
|
text_prompts = prompt_data['text_tokens'] |
|
lang_pr = prompt_data['lang_code'] |
|
lang_pr = code2lang[int(lang_pr)] |
|
|
|
|
|
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) |
|
text_prompts = torch.tensor(text_prompts).type(torch.int32) |
|
elif preset_prompt is not None and preset_prompt != "": |
|
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) |
|
audio_prompts = prompt_data['audio_tokens'] |
|
text_prompts = prompt_data['text_tokens'] |
|
lang_pr = prompt_data['lang_code'] |
|
lang_pr = code2lang[int(lang_pr)] |
|
|
|
|
|
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) |
|
text_prompts = torch.tensor(text_prompts).type(torch.int32) |
|
else: |
|
audio_prompts = torch.zeros([1, 0, NUM_QUANTIZERS]).type(torch.int32).to(device) |
|
text_prompts = torch.zeros([1, 0]).type(torch.int32) |
|
lang_pr = language if language != 'mix' else 'en' |
|
if mode == 'fixed-prompt': |
|
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) |
|
for text in sentences: |
|
text = text.replace("\n", "").strip(" ") |
|
if text == "": |
|
continue |
|
lang_token = lang2token[language] |
|
lang = token2lang[lang_token] |
|
text = lang_token + text + lang_token |
|
|
|
enroll_x_lens = text_prompts.shape[-1] |
|
logging.info(f"synthesize text: {text}") |
|
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) |
|
text_tokens, text_tokens_lens = text_collater( |
|
[ |
|
phone_tokens |
|
] |
|
) |
|
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) |
|
text_tokens_lens += enroll_x_lens |
|
|
|
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] |
|
encoded_frames = model.inference( |
|
text_tokens.to(device), |
|
text_tokens_lens.to(device), |
|
audio_prompts, |
|
enroll_x_lens=enroll_x_lens, |
|
top_k=-100, |
|
temperature=1, |
|
prompt_language=lang_pr, |
|
text_language=langs if accent == "no-accent" else lang, |
|
) |
|
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) |
|
samples = audio_tokenizer.decode( |
|
[(complete_tokens, None)] |
|
) |
|
message = f"Cut into {len(sentences)} sentences" |
|
return message, (24000, samples[0][0].cpu().numpy()) |
|
elif mode == "sliding-window": |
|
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) |
|
original_audio_prompts = audio_prompts |
|
original_text_prompts = text_prompts |
|
for text in sentences: |
|
text = text.replace("\n", "").strip(" ") |
|
if text == "": |
|
continue |
|
lang_token = lang2token[language] |
|
lang = token2lang[lang_token] |
|
text = lang_token + text + lang_token |
|
|
|
enroll_x_lens = text_prompts.shape[-1] |
|
logging.info(f"synthesize text: {text}") |
|
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) |
|
text_tokens, text_tokens_lens = text_collater( |
|
[ |
|
phone_tokens |
|
] |
|
) |
|
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) |
|
text_tokens_lens += enroll_x_lens |
|
|
|
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] |
|
encoded_frames = model.inference( |
|
text_tokens.to(device), |
|
text_tokens_lens.to(device), |
|
audio_prompts, |
|
enroll_x_lens=enroll_x_lens, |
|
top_k=-100, |
|
temperature=1, |
|
prompt_language=lang_pr, |
|
text_language=langs if accent == "no-accent" else lang, |
|
) |
|
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) |
|
if torch.rand(1) < 1.0: |
|
audio_prompts = encoded_frames[:, :, -NUM_QUANTIZERS:] |
|
text_prompts = text_tokens[:, enroll_x_lens:] |
|
else: |
|
audio_prompts = original_audio_prompts |
|
text_prompts = original_text_prompts |
|
samples = audio_tokenizer.decode( |
|
[(complete_tokens, None)] |
|
) |
|
message = f"Cut into {len(sentences)} sentences" |
|
return message, (24000, samples[0][0].cpu().numpy()) |
|
else: |
|
raise ValueError(f"No such mode {mode}") |
|
|
|
|
|
def main(): |
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown(top_md) |
|
with gr.Tab("Infer from audio"): |
|
gr.Markdown(infer_from_audio_md) |
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
textbox = gr.TextArea(label="Text", |
|
placeholder="Type your sentence here", |
|
value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input") |
|
language_dropdown = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', label='language') |
|
accent_dropdown = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent') |
|
textbox_transcript = gr.TextArea(label="Transcript", |
|
placeholder="Write transcript here. (leave empty to use whisper)", |
|
value="", elem_id=f"prompt-name") |
|
upload_audio_prompt = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) |
|
record_audio_prompt = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) |
|
with gr.Column(): |
|
text_output = gr.Textbox(label="Message") |
|
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") |
|
btn = gr.Button("Generate!") |
|
btn.click(infer_from_audio, |
|
inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript], |
|
outputs=[text_output, audio_output]) |
|
textbox_mp = gr.TextArea(label="Prompt name", |
|
placeholder="Name your prompt here", |
|
value="prompt_1", elem_id=f"prompt-name") |
|
btn_mp = gr.Button("Make prompt!") |
|
prompt_output = gr.File(interactive=False) |
|
btn_mp.click(make_npz_prompt, |
|
inputs=[textbox_mp, upload_audio_prompt, record_audio_prompt, textbox_transcript], |
|
outputs=[text_output, prompt_output]) |
|
gr.Examples(examples=infer_from_audio_examples, |
|
inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript], |
|
outputs=[text_output, audio_output], |
|
fn=infer_from_audio, |
|
cache_examples=False,) |
|
with gr.Tab("Make prompt"): |
|
gr.Markdown(make_prompt_md) |
|
with gr.Row(): |
|
with gr.Column(): |
|
textbox2 = gr.TextArea(label="Prompt name", |
|
placeholder="Name your prompt here", |
|
value="prompt_1", elem_id=f"prompt-name") |
|
|
|
textbox_transcript2 = gr.TextArea(label="Transcript", |
|
placeholder="Write transcript here. (leave empty to use whisper)", |
|
value="", elem_id=f"prompt-name") |
|
upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) |
|
record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) |
|
with gr.Column(): |
|
text_output_2 = gr.Textbox(label="Message") |
|
prompt_output_2 = gr.File(interactive=False) |
|
btn_2 = gr.Button("Make!") |
|
btn_2.click(make_npz_prompt, |
|
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], |
|
outputs=[text_output_2, prompt_output_2]) |
|
gr.Examples(examples=make_npz_prompt_examples, |
|
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], |
|
outputs=[text_output_2, prompt_output_2], |
|
fn=make_npz_prompt, |
|
cache_examples=False,) |
|
with gr.Tab("Infer from prompt"): |
|
gr.Markdown(infer_from_prompt_md) |
|
with gr.Row(): |
|
with gr.Column(): |
|
textbox_3 = gr.TextArea(label="Text", |
|
placeholder="Type your sentence here", |
|
value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input") |
|
language_dropdown_3 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語', 'Mix'], value='auto-detect', |
|
label='language') |
|
accent_dropdown_3 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', |
|
label='accent') |
|
preset_dropdown_3 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') |
|
prompt_file = gr.File(file_count='single', file_types=['.npz'], interactive=True) |
|
with gr.Column(): |
|
text_output_3 = gr.Textbox(label="Message") |
|
audio_output_3 = gr.Audio(label="Output Audio", elem_id="tts-audio") |
|
btn_3 = gr.Button("Generate!") |
|
btn_3.click(infer_from_prompt, |
|
inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file], |
|
outputs=[text_output_3, audio_output_3]) |
|
gr.Examples(examples=infer_from_prompt_examples, |
|
inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file], |
|
outputs=[text_output_3, audio_output_3], |
|
fn=infer_from_prompt, |
|
cache_examples=False,) |
|
with gr.Tab("Infer long text"): |
|
gr.Markdown(long_text_md) |
|
with gr.Row(): |
|
with gr.Column(): |
|
textbox_4 = gr.TextArea(label="Text", |
|
placeholder="Type your sentence here", |
|
value=long_text_example, elem_id=f"tts-input") |
|
language_dropdown_4 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', |
|
label='language') |
|
accent_dropdown_4 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', |
|
label='accent') |
|
preset_dropdown_4 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') |
|
prompt_file_4 = gr.File(file_count='single', file_types=['.npz'], interactive=True) |
|
with gr.Column(): |
|
text_output_4 = gr.TextArea(label="Message") |
|
audio_output_4 = gr.Audio(label="Output Audio", elem_id="tts-audio") |
|
btn_4 = gr.Button("Generate!") |
|
btn_4.click(infer_long_text, |
|
inputs=[textbox_4, preset_dropdown_4, prompt_file_4, language_dropdown_4, accent_dropdown_4], |
|
outputs=[text_output_4, audio_output_4]) |
|
|
|
app.launch() |
|
|
|
if __name__ == "__main__": |
|
formatter = ( |
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" |
|
) |
|
logging.basicConfig(format=formatter, level=logging.INFO) |
|
main() |