File size: 17,556 Bytes
449f4e3
56c981f
 
449f4e3
 
56c981f
449f4e3
 
56c981f
449f4e3
 
56c981f
 
 
 
 
449f4e3
56c981f
449f4e3
56c981f
 
 
 
449f4e3
 
44d5108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56c981f
 
 
9300b43
 
 
 
 
8024be0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56c981f
 
 
 
 
 
 
 
 
 
 
 
449f4e3
 
 
 
 
56c981f
 
 
 
 
 
 
 
 
223ba93
56c981f
13fc7cf
56c981f
449f4e3
56c981f
 
 
 
 
 
 
 
 
9300b43
 
 
 
56c981f
 
 
 
 
 
9300b43
 
56c981f
 
 
 
 
 
 
 
 
 
 
9300b43
 
 
449f4e3
56c981f
9300b43
449f4e3
9300b43
 
56c981f
13fc7cf
9300b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13fc7cf
9300b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56c981f
9300b43
 
 
 
 
56c981f
9300b43
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import streamlit as st
import cv2
from ultralytics import YOLO
from paddleocr import PaddleOCR
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
import numpy as np
import re
from datetime import datetime
import pandas as pd

# Load YOLO models
brand_model = YOLO('b.pt')  # Replace 'b.pt' with the correct path to your YOLO model for brands
ocr = PaddleOCR(lang='en')  # Initialize PaddleOCR
fruit_model = load_model('DenseNet20_model.h5')  # Replace with the correct path to your fruit freshness model
object_model = YOLO('yolov5s.pt')  # Add object detection model

# Class names for freshness detection
class_names = {
    0: 'Banana_Bad', 1: 'Banana_Good', 2: 'Fresh', 3: 'FreshCarrot', 4: 'FreshCucumber',
    5: 'FreshMango', 6: 'FreshTomato', 7: 'Guava_Bad', 8: 'Guava_Good', 9: 'Lime_Bad',
    10: 'Lime_Good', 11: 'Rotten', 12: 'RottenCarrot', 13: 'RottenCucumber',
    14: 'RottenMango', 15: 'RottenTomato', 16: 'freshBread', 17: 'rottenBread'
}

# Custom CSS for styling
st.markdown("""
    <style>
    .main {
        background-color: #f0f2f6;
        padding: 20px;
        border-radius: 10px;
    }
    .stButton>button {
        background-color: #4CAF50;
        color: white;
        border-radius: 8px;
        padding: 10px 24px;
        font-size: 16px;
        margin: 10px 0;
    }
    .stButton>button:hover {
        background-color: #45a049;
    }
    .stSidebar {
        background-color: #2c3e50;
        color: white;
    }
    .stSidebar .stSelectbox {
        color: black;
    }
    h1, h2, h3, h4, h5, h6 {
        color: #2c3e50;
    }
    </style>
""", unsafe_allow_html=True)

# Helper function: Extract expiry dates
def extract_expiry_dates(text):
    patterns = [
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',       # 20/07/2024 or 20-07-2024
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})',       # 20/07/24 or 20-07-24
        r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{4})',       # 20 MAY 2024
        r'([A-Za-z]{3,}\s*\d{1,2}[,\s]*\d{4})',    # July 20, 2024
        r'(\d{4}[\/\-]\d{1,2}[\/\-]\d{1,2})',       # 2024/07/20 or 2024-07-20
        r'([A-Za-z]{3}[\-]\d{1,2}[\-]\d{4})',
        r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Expiry Date: 20/07/2O24
    r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-]\d{4}))',  # Expiry Date: 20/07/2024
    r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Expiry Date: 20/07/2O24
    r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Expiry Date: 20 MAY 2O24
    r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*\d{4}))',  # Expiry Date: 20 MAY 2024
    r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Expiry Date: 20 MAY 2O24
    r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Expiry Date: 2024/07/2O24
    r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-]\d{2}))',  # Expiry Date: 2024/07/20
    r'(?:best\s*before\s*[:\-]?\s*.*?(\d{4}))',  # Best Before: 2025
    r'(?:best\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Best Before: 20/07/2O24
    r'(?:best\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-]\d{4}))',  # Best Before: 20/07/2024
    r'(?:best\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Best Before: 20/07/2O24
    r'(?:best\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Best Before: 20 MAY 2O24
    r'(?:best\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*\d{4}))',  # Best Before: 20 MAY 2024
    r'(?:best\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Best Before: 20 MAY 2O24
    r'(?:best\s*before\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Best Before: 2024/07/2O24
    r'(?:best\s*before\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-]\d{2}))',  # Best Before: 2024/07/20
    r'(?:best\s*before\s*[:\-]?\s*.*?(\d{1,2}\d{2}\d{2}))', 
    r'(?:best\s*before\s*[:\-]?\s*(\d{6}))',
    r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{1,2}[A-Za-z]{3,}[0O]\d{2}))',  # Consume Before: 3ODEC2O24
    r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{1,2}[A-Za-z]{3,}\d{2}))',  # Consume Before: 30DEC23
    r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Consume Before: 20/07/2O24
    r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-]\d{4}))',  # Consume Before: 20/07/2024
    r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Consume Before: 20/07/2O24
    r'(?:consume\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Consume Before: 20 MAY 2O24
    r'(?:consume\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*\d{4}))',  # Consume Before: 20 MAY 2024
    r'(?:consume\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Consume Before: 20 MAY 2O24
    r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Consume Before: 2024/07/2O24
    r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-]\d{2}))',  # Consume Before: 2024/07/20
    r'(?:exp\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Exp: 20/07/2O24
    r'(?:exp\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-]\d{4}))',  # Exp: 20/07/2024
    r'(?:exp\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Exp: 20/07/2O24
    r'(?:exp\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Exp: 20 MAY 2O24
    r'(?:exp\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*\d{4}))',  # Exp: 20 MAY 2024
    r'(?:exp\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Exp: 20 MAY 2O24
    r'(?:exp\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Exp: 2024/07/2O24
    r'(?:exp\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-]\d{2}))',  # Exp: 2024/07/20
    r'Exp\.Date\s+(\d{2}[A-Z]{3}\d{4})',
    r'(?:exp\s*\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Exp. Date: 16 MAR 2O30 (with typo)
    r'(?:exp\s*\.?\s*date\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))',  # Exp. Date: 15/12/2O30 (with typo)
    r'(?:exp\s*\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Exp. Date: 15 MAR 2O30 (with typo)
    r'(?:exp\s*\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))',  # Exp. Date cdsyubfuyef 15 MAR 2O30 (with typo)
    r'(\d{2}[\/\-]\d{2}[\/\-]\d{4})',  # 20/07/2024
    r'(\d{2}[\/\-]\d{2}[\/\-]\d{2})',  # 20/07/24
    r'(\d{2}\s*[A-Za-z]{3,}\s*\d{4})',  # 20 MAY 2024
    r'(\d{2}\s*[A-Za-z]{3,}\s*\d{2})',  # 20 MAY 24
    r'(\d{4}[\/\-]\d{2}[\/\-]\d{2})',  # 2024/07/20
    r'(\d{4}[\/\-]\d{2}[\/\-]\d{2})',  # 2024-07-20
    r'(\d{4}[A-Za-z]{3,}\d{2})',  # 2024MAY20
    r'(\d{2}[A-Za-z]{3,}\d{4})',  # 20MAY2024
    r'(?:exp\.?\s*date\s*[:\-]?\s*(\d{2}\s*[A-Za-z]{3,}\s*(\d{4}|\d{2})))',
    r'(?:exp\.?\s*date\s*[:\-]?\s*(\d{2}\s*\d{2}\s*\d{4}))',  # Exp. Date: 20 05 2025
    r'(\d{4}[A-Za-z]{3}\d{2})',  # 2025MAY11
    r'(?:best\s*before\s*[:\-]?\s*(\d+)\s*(days?|months?|years?))',  # Best Before: 6 months
    r'(?:best\s*before\s*[:\-]?\s*(three)\s*(months?))',
    r'(\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\b\s*\d{4})',
    r'\bUSE BY\s+(\d{1,2}[A-Za-z]{3}\d{4})\b',
    r'Exp\.Date\s*(\d{2}[A-Z]{3}\d{4})',
    r'EXP:\d{4}/\d{2}/\d{4}/\d{1}/[A-Z]',     # JAN-15-2024
    r'USE BY[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Use by date
        r'BEST BEFORE[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Best before date
        r'EXPIRY DATE[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Expiry Date
        r'EXPIRY[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Expiry
        r'EXP[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Exp
        r'VALID UNTIL[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Valid Until
        r'CONSUME BY[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Consume By
        r'EXPIRES ON[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Expires On
        # DDMMMYYYY format
        r'(\d{1,2}[A-Za-z]{3}\d{4})',  # DDMMMYYYY format
        # Short year formats
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})',  # Short year date format (DD/MM/YY)
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # General date format (DD/MM/YYYY)
        # Year-month-day formats
        r'(\d{4}[\/\-]\d{1,2}[\/\-]\d{1,2})',  # Year-month-day format (YYYY/MM/DD)
        # Month/Year formats
        r'(\d{1,2}[\/\-]\d{1,2})',  # MM/DD format
        r'(\d{1,2}[\/\-]\d{2})',  # MM/YY format
        # Month name formats
        r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{4})',  # Month name with day and year
        r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{2})',  # Month name with day and short year
        # Year with month name
        r'(\d{4}[A-Za-z]{3,}\d{1,2})',  # Year with month name
        r'(\d{1,2}[A-Za-z]{3,}\d{4})',  # Day with month name and full year
        # Additional formats
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})',  # MM/DD/YY format
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # MM/DD/YYYY format
        r'(\d{1,2}[\/\-]\d{1,2})',  # MM/DD format
        r'(\d{1,2}[\/\-]\d{2})',  # MM/YY format
        # Best before phrases
        r'Best before (\d+) months',  # Best before in months
        r'Expiration Date[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Expiration Date
        r'Expires[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Expires
        # Additional variations
        r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{4})',  # Month name with day and year
        r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{2})',  # Month name with day and short year
        # More variations
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # MM/DD/YYYY format
        r'(\d{1,2}[\/\-]\d{1,2})',  # MM/DD format
        r'(\d{1,2}[\/\-]\d{2})',  # MM/YY format
        # Additional expiry phrases
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Expiry in various formats
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})',  # Expiry in short year formats
        r'(\d{1,2}[\/\-]\d{1,2})',  # Expiry in MM/DD format
        r'(\d{1,2}[\/\-]\d{2})',  # Expiry in MM/YY format
        # Additional phrases
        r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{4})',  # Month name with day and year
        r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{2})',  # Month name with day and short year
        r'(\d{4}[A-Za-z]{3,}\d{1,2})',  # Year with month name
        r'(\d{1,2}[A-Za-z]{3,}\d{4})',  # Day with month name and full year
        # Additional expiry phrases
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})',  # Expiry in various formats
        r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})',  # Expiry in short year formats
        r'(\d{1,2}[\/\-]\d{1,2})',  # Expiry in MM/DD format
        r'(\d{1,2}[\/\-]\d{2})',  # Expiry in MM/YY format
    ]
    dates = []
    for pattern in patterns:
        matches = re.findall(pattern, text)
        dates.extend(matches)

    unique_dates = sorted(dates, key=lambda x: len(x), reverse=True)
    return [unique_dates[0]] if unique_dates else []  # Return the most likely date

# Helper function: Preprocess image for fruit freshness
def preprocess_image(image):
    img = cv2.resize(image, (128, 128))
    img_array = img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = img_array / 255.0
    return img_array

# Helper function: Calculate days to expiry
def calculate_days_to_expiry(expiry_dates):
    results = []
    today = datetime.now()
    for date_str in expiry_dates:
        try:
            if '/' in date_str or '-' in date_str:
                if len(date_str.split('/')[-1]) == 2 or len(date_str.split('-')[-1]) == 2:
                    date_obj = datetime.strptime(date_str, '%d/%m/%y') if '/' in date_str else datetime.strptime(date_str, '%d-%m-%y')
                else:
                    date_obj = datetime.strptime(date_str, '%d/%m/%Y') if '/' in date_str else datetime.strptime(date_str, '%d-%m-%Y')
            else:
                date_obj = datetime.strptime(date_str, '%d %B %Y')

            delta = (date_obj - today).days
            if delta >= 0:
                results.append(f"{date_str}: {delta} days to expire")
            else:
                results.append(f"{date_str}: Expired")
        except ValueError:
            results.append(f"{date_str}: Invalid date format")
    return results

# Initialize session state
if 'uploaded_file' not in st.session_state:
    st.session_state['uploaded_file'] = None

# Streamlit App
st.title("Flipkart Grid")

# Sidebar options
app_mode = st.sidebar.selectbox(
    "Choose the mode",
    ["Home", "Brand & Text Detection", "Fruit Freshness Detection", "Object Detection"],
    on_change=lambda: st.session_state.update({'uploaded_file': None})  # Reset uploaded file on mode change
)

if app_mode == "Home":
    st.markdown("""
    ## Welcome to the Detection App
    Use the sidebar to choose between:
    - *Brand & Text Detection*: Detect brands, extract text, and identify expiry dates from uploaded images.
    - *Fruit Freshness Detection*: Detect and classify the freshness of fruits from uploaded images.
    - *Object Detection*: Detect objects in uploaded images.
    """)

else:
    st.header(app_mode)
    uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key=app_mode)

    if uploaded_file is not None:
        st.session_state['uploaded_file'] = uploaded_file

    if st.session_state['uploaded_file'] is not None:
        file_bytes = np.asarray(bytearray(st.session_state['uploaded_file'].read()), dtype=np.uint8)
        image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)

        if app_mode == "Brand & Text Detection":
            # Brand detection
            results = brand_model.predict(source=image, stream=False)
            detected_image = results[0].plot()

            # OCR for text extraction
            _, img_buffer = cv2.imencode('.jpg', image)
            ocr_result = ocr.ocr(img_buffer.tobytes())
            if ocr_result and isinstance(ocr_result[0], list) and len(ocr_result[0]) > 0:
                extracted_text = ' '.join([line[1][0] for line in ocr_result[0]])
                expiry_dates = extract_expiry_dates(extracted_text)
                expiry_info = calculate_days_to_expiry(expiry_dates)
            else:
                extracted_text = "No text detected"
                expiry_dates = []
                expiry_info = []

            # Count objects
            object_counts = {}
            for box in results[0].boxes.data.cpu().numpy():
                label = results[0].names[int(box[5])]
                object_counts[label] = object_counts.get(label, 0) + 1

            # Display results
            st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected Image")
            st.markdown(f"*Extracted Text:* {extracted_text}")
            st.markdown(f"*Expiry Dates:*")
            if expiry_info:
                for info in expiry_info:
                    st.markdown(f"- {info}")
            else:
                st.markdown("None")
            st.markdown("*Object Counts:*")
            for label, count in object_counts.items():
                st.markdown(f"- {label}: {count}")

        elif app_mode == "Fruit Freshness Detection":
            # Preprocess and predict
            img_array = preprocess_image(image)
            predictions = fruit_model.predict(img_array)
            predicted_class = np.argmax(predictions, axis=1)[0]
            label = class_names[predicted_class]
            confidence = predictions[0][predicted_class] * 100

            # Display results
            st.image(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Uploaded Image")
            st.markdown(f"*Label:* {label}")
            st.markdown(f"*Confidence:* {confidence:.2f}%")

        elif app_mode == "Object Detection":
            # Object Detection
            results = object_model.predict(source=image, stream=False)
            detected_objects = []

            for result in results:
                boxes = result.boxes.data.cpu().numpy()
                for box in boxes:
                    class_id = int(box[5])
                    confidence = box[4]  # Assuming the confidence score is at index 4
                    detected_objects.append((result.names[class_id], confidence))

                    # Draw bounding box and label on the image
                    x1, y1, x2, y2 = map(int, box[:4])
                    label = f"{result.names[class_id]} {confidence * 100:.2f}%"
                    cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
                    cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)

            # Convert the image back to RGB for display in Streamlit
            image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            st.image(image_rgb, caption='Detected Objects', use_container_width=True)

            # Count occurrences and average confidence of each object
            object_data = {}
            for obj, confidence in detected_objects:
                if obj in object_data:
                    object_data[obj]['count'] += 1
                    object_data[obj]['total_confidence'] += confidence
                else:
                    object_data[obj] = {'count': 1, 'total_confidence': confidence}

            # Prepare data for display
            object_display_data = [
                {'Object': obj, 'Count': data['count'], 'Average Confidence': data['total_confidence'] / data['count']}
                for obj, data in object_data.items()
            ]

            # Display detected objects in a table with column names
            st.write("Detected Objects and Counts:")
            st.table(pd.DataFrame(object_display_data))