Spaces:
Sleeping
Sleeping
File size: 17,556 Bytes
449f4e3 56c981f 449f4e3 56c981f 449f4e3 56c981f 449f4e3 56c981f 449f4e3 56c981f 449f4e3 56c981f 449f4e3 44d5108 56c981f 9300b43 8024be0 56c981f 449f4e3 56c981f 223ba93 56c981f 13fc7cf 56c981f 449f4e3 56c981f 9300b43 56c981f 9300b43 56c981f 9300b43 449f4e3 56c981f 9300b43 449f4e3 9300b43 56c981f 13fc7cf 9300b43 13fc7cf 9300b43 56c981f 9300b43 56c981f 9300b43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import streamlit as st
import cv2
from ultralytics import YOLO
from paddleocr import PaddleOCR
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import img_to_array
import numpy as np
import re
from datetime import datetime
import pandas as pd
# Load YOLO models
brand_model = YOLO('b.pt') # Replace 'b.pt' with the correct path to your YOLO model for brands
ocr = PaddleOCR(lang='en') # Initialize PaddleOCR
fruit_model = load_model('DenseNet20_model.h5') # Replace with the correct path to your fruit freshness model
object_model = YOLO('yolov5s.pt') # Add object detection model
# Class names for freshness detection
class_names = {
0: 'Banana_Bad', 1: 'Banana_Good', 2: 'Fresh', 3: 'FreshCarrot', 4: 'FreshCucumber',
5: 'FreshMango', 6: 'FreshTomato', 7: 'Guava_Bad', 8: 'Guava_Good', 9: 'Lime_Bad',
10: 'Lime_Good', 11: 'Rotten', 12: 'RottenCarrot', 13: 'RottenCucumber',
14: 'RottenMango', 15: 'RottenTomato', 16: 'freshBread', 17: 'rottenBread'
}
# Custom CSS for styling
st.markdown("""
<style>
.main {
background-color: #f0f2f6;
padding: 20px;
border-radius: 10px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
border-radius: 8px;
padding: 10px 24px;
font-size: 16px;
margin: 10px 0;
}
.stButton>button:hover {
background-color: #45a049;
}
.stSidebar {
background-color: #2c3e50;
color: white;
}
.stSidebar .stSelectbox {
color: black;
}
h1, h2, h3, h4, h5, h6 {
color: #2c3e50;
}
</style>
""", unsafe_allow_html=True)
# Helper function: Extract expiry dates
def extract_expiry_dates(text):
patterns = [
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # 20/07/2024 or 20-07-2024
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})', # 20/07/24 or 20-07-24
r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{4})', # 20 MAY 2024
r'([A-Za-z]{3,}\s*\d{1,2}[,\s]*\d{4})', # July 20, 2024
r'(\d{4}[\/\-]\d{1,2}[\/\-]\d{1,2})', # 2024/07/20 or 2024-07-20
r'([A-Za-z]{3}[\-]\d{1,2}[\-]\d{4})',
r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Expiry Date: 20/07/2O24
r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-]\d{4}))', # Expiry Date: 20/07/2024
r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Expiry Date: 20/07/2O24
r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Expiry Date: 20 MAY 2O24
r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*\d{4}))', # Expiry Date: 20 MAY 2024
r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Expiry Date: 20 MAY 2O24
r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Expiry Date: 2024/07/2O24
r'(?:exp(?:iry)?\.?\s*date\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-]\d{2}))', # Expiry Date: 2024/07/20
r'(?:best\s*before\s*[:\-]?\s*.*?(\d{4}))', # Best Before: 2025
r'(?:best\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Best Before: 20/07/2O24
r'(?:best\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-]\d{4}))', # Best Before: 20/07/2024
r'(?:best\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Best Before: 20/07/2O24
r'(?:best\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Best Before: 20 MAY 2O24
r'(?:best\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*\d{4}))', # Best Before: 20 MAY 2024
r'(?:best\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Best Before: 20 MAY 2O24
r'(?:best\s*before\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Best Before: 2024/07/2O24
r'(?:best\s*before\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-]\d{2}))', # Best Before: 2024/07/20
r'(?:best\s*before\s*[:\-]?\s*.*?(\d{1,2}\d{2}\d{2}))',
r'(?:best\s*before\s*[:\-]?\s*(\d{6}))',
r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{1,2}[A-Za-z]{3,}[0O]\d{2}))', # Consume Before: 3ODEC2O24
r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{1,2}[A-Za-z]{3,}\d{2}))', # Consume Before: 30DEC23
r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Consume Before: 20/07/2O24
r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-]\d{4}))', # Consume Before: 20/07/2024
r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Consume Before: 20/07/2O24
r'(?:consume\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Consume Before: 20 MAY 2O24
r'(?:consume\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*\d{4}))', # Consume Before: 20 MAY 2024
r'(?:consume\s*before\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Consume Before: 20 MAY 2O24
r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Consume Before: 2024/07/2O24
r'(?:consume\s*before\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-]\d{2}))', # Consume Before: 2024/07/20
r'(?:exp\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Exp: 20/07/2O24
r'(?:exp\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-]\d{4}))', # Exp: 20/07/2024
r'(?:exp\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Exp: 20/07/2O24
r'(?:exp\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Exp: 20 MAY 2O24
r'(?:exp\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*\d{4}))', # Exp: 20 MAY 2024
r'(?:exp\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Exp: 20 MAY 2O24
r'(?:exp\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Exp: 2024/07/2O24
r'(?:exp\s*[:\-]?\s*.*?(\d{4}[\/\-]\d{2}[\/\-]\d{2}))', # Exp: 2024/07/20
r'Exp\.Date\s+(\d{2}[A-Z]{3}\d{4})',
r'(?:exp\s*\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Exp. Date: 16 MAR 2O30 (with typo)
r'(?:exp\s*\.?\s*date\s*[:\-]?\s*.*?(\d{2}[\/\-]\d{2}[\/\-][0O]\d{2}))', # Exp. Date: 15/12/2O30 (with typo)
r'(?:exp\s*\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Exp. Date: 15 MAR 2O30 (with typo)
r'(?:exp\s*\.?\s*date\s*[:\-]?\s*.?(\d{2}\s[A-Za-z]{3,}\s*[0O]\d{2}))', # Exp. Date cdsyubfuyef 15 MAR 2O30 (with typo)
r'(\d{2}[\/\-]\d{2}[\/\-]\d{4})', # 20/07/2024
r'(\d{2}[\/\-]\d{2}[\/\-]\d{2})', # 20/07/24
r'(\d{2}\s*[A-Za-z]{3,}\s*\d{4})', # 20 MAY 2024
r'(\d{2}\s*[A-Za-z]{3,}\s*\d{2})', # 20 MAY 24
r'(\d{4}[\/\-]\d{2}[\/\-]\d{2})', # 2024/07/20
r'(\d{4}[\/\-]\d{2}[\/\-]\d{2})', # 2024-07-20
r'(\d{4}[A-Za-z]{3,}\d{2})', # 2024MAY20
r'(\d{2}[A-Za-z]{3,}\d{4})', # 20MAY2024
r'(?:exp\.?\s*date\s*[:\-]?\s*(\d{2}\s*[A-Za-z]{3,}\s*(\d{4}|\d{2})))',
r'(?:exp\.?\s*date\s*[:\-]?\s*(\d{2}\s*\d{2}\s*\d{4}))', # Exp. Date: 20 05 2025
r'(\d{4}[A-Za-z]{3}\d{2})', # 2025MAY11
r'(?:best\s*before\s*[:\-]?\s*(\d+)\s*(days?|months?|years?))', # Best Before: 6 months
r'(?:best\s*before\s*[:\-]?\s*(three)\s*(months?))',
r'(\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\b\s*\d{4})',
r'\bUSE BY\s+(\d{1,2}[A-Za-z]{3}\d{4})\b',
r'Exp\.Date\s*(\d{2}[A-Z]{3}\d{4})',
r'EXP:\d{4}/\d{2}/\d{4}/\d{1}/[A-Z]', # JAN-15-2024
r'USE BY[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Use by date
r'BEST BEFORE[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Best before date
r'EXPIRY DATE[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Expiry Date
r'EXPIRY[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Expiry
r'EXP[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Exp
r'VALID UNTIL[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Valid Until
r'CONSUME BY[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Consume By
r'EXPIRES ON[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Expires On
# DDMMMYYYY format
r'(\d{1,2}[A-Za-z]{3}\d{4})', # DDMMMYYYY format
# Short year formats
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})', # Short year date format (DD/MM/YY)
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # General date format (DD/MM/YYYY)
# Year-month-day formats
r'(\d{4}[\/\-]\d{1,2}[\/\-]\d{1,2})', # Year-month-day format (YYYY/MM/DD)
# Month/Year formats
r'(\d{1,2}[\/\-]\d{1,2})', # MM/DD format
r'(\d{1,2}[\/\-]\d{2})', # MM/YY format
# Month name formats
r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{4})', # Month name with day and year
r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{2})', # Month name with day and short year
# Year with month name
r'(\d{4}[A-Za-z]{3,}\d{1,2})', # Year with month name
r'(\d{1,2}[A-Za-z]{3,}\d{4})', # Day with month name and full year
# Additional formats
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})', # MM/DD/YY format
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # MM/DD/YYYY format
r'(\d{1,2}[\/\-]\d{1,2})', # MM/DD format
r'(\d{1,2}[\/\-]\d{2})', # MM/YY format
# Best before phrases
r'Best before (\d+) months', # Best before in months
r'Expiration Date[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Expiration Date
r'Expires[:\-]?\s*(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Expires
# Additional variations
r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{4})', # Month name with day and year
r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{2})', # Month name with day and short year
# More variations
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # MM/DD/YYYY format
r'(\d{1,2}[\/\-]\d{1,2})', # MM/DD format
r'(\d{1,2}[\/\-]\d{2})', # MM/YY format
# Additional expiry phrases
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Expiry in various formats
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})', # Expiry in short year formats
r'(\d{1,2}[\/\-]\d{1,2})', # Expiry in MM/DD format
r'(\d{1,2}[\/\-]\d{2})', # Expiry in MM/YY format
# Additional phrases
r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{4})', # Month name with day and year
r'(\d{1,2}\s*[A-Za-z]{3,}\s*\d{2})', # Month name with day and short year
r'(\d{4}[A-Za-z]{3,}\d{1,2})', # Year with month name
r'(\d{1,2}[A-Za-z]{3,}\d{4})', # Day with month name and full year
# Additional expiry phrases
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{4})', # Expiry in various formats
r'(\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2})', # Expiry in short year formats
r'(\d{1,2}[\/\-]\d{1,2})', # Expiry in MM/DD format
r'(\d{1,2}[\/\-]\d{2})', # Expiry in MM/YY format
]
dates = []
for pattern in patterns:
matches = re.findall(pattern, text)
dates.extend(matches)
unique_dates = sorted(dates, key=lambda x: len(x), reverse=True)
return [unique_dates[0]] if unique_dates else [] # Return the most likely date
# Helper function: Preprocess image for fruit freshness
def preprocess_image(image):
img = cv2.resize(image, (128, 128))
img_array = img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = img_array / 255.0
return img_array
# Helper function: Calculate days to expiry
def calculate_days_to_expiry(expiry_dates):
results = []
today = datetime.now()
for date_str in expiry_dates:
try:
if '/' in date_str or '-' in date_str:
if len(date_str.split('/')[-1]) == 2 or len(date_str.split('-')[-1]) == 2:
date_obj = datetime.strptime(date_str, '%d/%m/%y') if '/' in date_str else datetime.strptime(date_str, '%d-%m-%y')
else:
date_obj = datetime.strptime(date_str, '%d/%m/%Y') if '/' in date_str else datetime.strptime(date_str, '%d-%m-%Y')
else:
date_obj = datetime.strptime(date_str, '%d %B %Y')
delta = (date_obj - today).days
if delta >= 0:
results.append(f"{date_str}: {delta} days to expire")
else:
results.append(f"{date_str}: Expired")
except ValueError:
results.append(f"{date_str}: Invalid date format")
return results
# Initialize session state
if 'uploaded_file' not in st.session_state:
st.session_state['uploaded_file'] = None
# Streamlit App
st.title("Flipkart Grid")
# Sidebar options
app_mode = st.sidebar.selectbox(
"Choose the mode",
["Home", "Brand & Text Detection", "Fruit Freshness Detection", "Object Detection"],
on_change=lambda: st.session_state.update({'uploaded_file': None}) # Reset uploaded file on mode change
)
if app_mode == "Home":
st.markdown("""
## Welcome to the Detection App
Use the sidebar to choose between:
- *Brand & Text Detection*: Detect brands, extract text, and identify expiry dates from uploaded images.
- *Fruit Freshness Detection*: Detect and classify the freshness of fruits from uploaded images.
- *Object Detection*: Detect objects in uploaded images.
""")
else:
st.header(app_mode)
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key=app_mode)
if uploaded_file is not None:
st.session_state['uploaded_file'] = uploaded_file
if st.session_state['uploaded_file'] is not None:
file_bytes = np.asarray(bytearray(st.session_state['uploaded_file'].read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
if app_mode == "Brand & Text Detection":
# Brand detection
results = brand_model.predict(source=image, stream=False)
detected_image = results[0].plot()
# OCR for text extraction
_, img_buffer = cv2.imencode('.jpg', image)
ocr_result = ocr.ocr(img_buffer.tobytes())
if ocr_result and isinstance(ocr_result[0], list) and len(ocr_result[0]) > 0:
extracted_text = ' '.join([line[1][0] for line in ocr_result[0]])
expiry_dates = extract_expiry_dates(extracted_text)
expiry_info = calculate_days_to_expiry(expiry_dates)
else:
extracted_text = "No text detected"
expiry_dates = []
expiry_info = []
# Count objects
object_counts = {}
for box in results[0].boxes.data.cpu().numpy():
label = results[0].names[int(box[5])]
object_counts[label] = object_counts.get(label, 0) + 1
# Display results
st.image(cv2.cvtColor(detected_image, cv2.COLOR_BGR2RGB), caption="Detected Image")
st.markdown(f"*Extracted Text:* {extracted_text}")
st.markdown(f"*Expiry Dates:*")
if expiry_info:
for info in expiry_info:
st.markdown(f"- {info}")
else:
st.markdown("None")
st.markdown("*Object Counts:*")
for label, count in object_counts.items():
st.markdown(f"- {label}: {count}")
elif app_mode == "Fruit Freshness Detection":
# Preprocess and predict
img_array = preprocess_image(image)
predictions = fruit_model.predict(img_array)
predicted_class = np.argmax(predictions, axis=1)[0]
label = class_names[predicted_class]
confidence = predictions[0][predicted_class] * 100
# Display results
st.image(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Uploaded Image")
st.markdown(f"*Label:* {label}")
st.markdown(f"*Confidence:* {confidence:.2f}%")
elif app_mode == "Object Detection":
# Object Detection
results = object_model.predict(source=image, stream=False)
detected_objects = []
for result in results:
boxes = result.boxes.data.cpu().numpy()
for box in boxes:
class_id = int(box[5])
confidence = box[4] # Assuming the confidence score is at index 4
detected_objects.append((result.names[class_id], confidence))
# Draw bounding box and label on the image
x1, y1, x2, y2 = map(int, box[:4])
label = f"{result.names[class_id]} {confidence * 100:.2f}%"
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
# Convert the image back to RGB for display in Streamlit
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
st.image(image_rgb, caption='Detected Objects', use_container_width=True)
# Count occurrences and average confidence of each object
object_data = {}
for obj, confidence in detected_objects:
if obj in object_data:
object_data[obj]['count'] += 1
object_data[obj]['total_confidence'] += confidence
else:
object_data[obj] = {'count': 1, 'total_confidence': confidence}
# Prepare data for display
object_display_data = [
{'Object': obj, 'Count': data['count'], 'Average Confidence': data['total_confidence'] / data['count']}
for obj, data in object_data.items()
]
# Display detected objects in a table with column names
st.write("Detected Objects and Counts:")
st.table(pd.DataFrame(object_display_data)) |