EmailGeneration / utils.py
Mia2024's picture
pr19 (#19)
2f0136f verified
raw
history blame
2.83 kB
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import re
# Load saved model and tokenizer
model_checkpoint = "24NLPGroupO/EmailGeneration"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, truncation=True)
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
# Set up the generation pipeline
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
def clean_generated_text(text):
# Basic cleaning
text = re.sub(r'^(Re:|Fwd:)', '', text) # Remove reply and forward marks
text = re.sub(r'Best regards,.*$', '', text, flags=re.DOTALL) # Remove everything after signature
text = re.sub(r'PHONE.*$', '', text, flags=re.DOTALL) # Remove everything after phone numbers
text = re.sub(r'Email:.*$', '', text, flags=re.DOTALL) # Remove everything after email addresses
text = re.sub(r'Cc:.*$', '', text, flags=re.DOTALL) # Remove CC list
text = re.sub(r'\* Attachments:.*', '', text, flags=re.S) # Remove 'Attachments:' and everything following it
text = re.sub(r'©️ .*$', '', text, flags=re.DOTALL) # Remove copyright and ownership statements
text = re.sub(r'URL If this message is not displaying properly, click here.*$', '', text, flags=re.DOTALL) # Remove error display message and links
text = re.sub(r'\d{5,}', 'NUMBER', text) # Replace long sequences of numbers, likely phone numbers or ZIP codes
return text.strip()
def generate_email(product, gender, profession, hobby):
input_text = f"{product} {gender} {profession} {hobby}"
result = generator(
input_text, # Initial text to prompt the model. Sets the context or topic for text generation.
max_length=256, # Maximum length of the generated text in tokens, limiting the output size.
do_sample=True, # Enables stochastic sampling; the model can generate diverse outputs at each step.
top_k=20, # Limits the vocabulary considered at each step to the top-k most likely next words.
top_p=0.6, # Uses nucleus sampling: Narrows down to the smallest set of words totaling 60% of the likelihood.
temperature=0.4, # Scales logits before sampling to reduce randomness and produce more deterministic output.
repetition_penalty=1.5, # Penalizes words that were already mentioned, reducing repetition in the text.
# truncation=True, # Truncates the output to the maximum length if it exceeds it.
num_return_sequences=3 # Generates three different sequences to choose from, enhancing output variety.
)
# Select the best output from the generated sequences
best_text = sorted([clean_generated_text(r['generated_text']) for r in result], key=len)[-1]
return best_text