File size: 1,393 Bytes
12863e1
2cf6be0
 
f1759ae
05d3d42
2cf6be0
f1759ae
 
6b0d828
2cf6be0
12863e1
0fc6bc9
4095388
af84433
f1759ae
 
987f112
f1759ae
2cf6be0
fa0ee64
 
 
 
fb01197
0fc6bc9
f0f8ecd
262e1d3
f1759ae
 
ad9ba71
f1759ae
2cf6be0
fa0ee64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import spaces
import gradio as gr
import torch
from diffusers import DiffusionPipeline
import rembg

pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
pipe.to("cuda")

# Function to generate an image from text using diffusion
@spaces.GPU
def generate_image(prompt):
    prompt += "no background, side view, minimalist shot"
    
    image = pipe(prompt).images[0]
    image2 = rembg.remove(image)

    return image, image2

_TITLE = "Shoe Generator"
with gr.Blocks(_TITLE) as ShoeGen:
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Enter a discription of a shoe")
            # neg_prompt = gr.Textbox(label="Enter a negative prompt", value="low quality, watermark, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, body out of frame, blurry, bad anatomy, blurred, watermark, grainy, signature, cut off, draft, closed eyes, text, logo")
            button_gen = gr.Button("Generate Image")
        with gr.Column():
            image = gr.Image(label="Generated Image", show_download_button=True) 
            image_nobg = gr.Image(label="Generated Image (No Background)", show_download_button=True) 
    
    button_gen.click(generate_image, inputs=[prompt], outputs=[image, image_nobg])

ShoeGen.launch()