Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('pip install numpy pillow opencv-python fastapi starlette uvicorn requests')
|
3 |
+
import gradio as gr
|
4 |
+
import shutil
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import asyncio
|
9 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
10 |
+
from gradio_client import Client
|
11 |
+
from fastapi import FastAPI, Request
|
12 |
+
from fastapi.staticfiles import StaticFiles
|
13 |
+
from starlette.responses import Response
|
14 |
+
import uvicorn
|
15 |
+
import requests
|
16 |
+
from urllib.parse import quote
|
17 |
+
from unicodedata import normalize
|
18 |
+
|
19 |
+
root = os.path.dirname(os.path.abspath(__file__))
|
20 |
+
textures_folder = os.path.join(root, 'textures')
|
21 |
+
os.makedirs(textures_folder, exist_ok=True)
|
22 |
+
valid_extensions = ['.jpeg', '.jpg', '.png']
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
textures_repo = "https://huggingface.co/datasets/2ch/textures/resolve/main/"
|
27 |
+
textures_for_download = [
|
28 |
+
f"{textures_repo}гауссовский_шум_и_мелкое_зерно.png?download=true",
|
29 |
+
f"{textures_repo}грязная_матрица.png?download=true",
|
30 |
+
f"{textures_repo}для_ночных_и_тёмных_кадров_сильный_шум_и_пыль.png?download=true",
|
31 |
+
f"{textures_repo}для_ночных_и_тёмных_кадров_царапины_шум_пыль_дымка.png?download=true",
|
32 |
+
f"{textures_repo}для_светлых_и_солнечных_ярких_фото_мелкое_констрастное_зерно.png?download=true",
|
33 |
+
f"{textures_repo}зернистость_плёнки.png?download=true",
|
34 |
+
f"{textures_repo}зернистость_плёнки_с_грязью.png?download=true",
|
35 |
+
f"{textures_repo}испорченная_ворсом_плёнка.png?download=true",
|
36 |
+
f"{textures_repo}мелкий_цветной_шум.png?download=true",
|
37 |
+
f"{textures_repo}мелкое_контрастное_зерно_и_средний_цветвой_шум.png?download=true",
|
38 |
+
f"{textures_repo}очень_мелкое_зерно.png?download=true",
|
39 |
+
f"{textures_repo}пыльная_плёнка.png?download=true",
|
40 |
+
f"{textures_repo}сильный_цветовой_шум_для_ночных_фото.png?download=true",
|
41 |
+
f"{textures_repo}слабый_естественный_шум_матрицы_смартфона.png?download=true",
|
42 |
+
f"{textures_repo}среднее_зерно.png?download=true",
|
43 |
+
f"{textures_repo}среднее_монохромное_зерно_пыль_и_ворсинки.png?download=true",
|
44 |
+
f"{textures_repo}средний_цветной_шум.png?download=true",
|
45 |
+
f"{textures_repo}старая_матрица.png?download=true",
|
46 |
+
f"{textures_repo}старая_потёртая_плёнка.png?download=true",
|
47 |
+
f"{textures_repo}цветной_шум_матрицы.png?download=true",
|
48 |
+
f"{textures_repo}цветной_шум_на_плёнке.png?download=true",
|
49 |
+
f"{textures_repo}шумная_матрица.png?download=true",
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
def dl_textures(texture_url):
|
54 |
+
texture_for_download = quote(normalize('NFD', texture_url), safe='/?:=')
|
55 |
+
filename = texture_url.split('/')[-1].split('?')[0]
|
56 |
+
file_path = os.path.join(textures_folder, filename)
|
57 |
+
response = requests.get(texture_for_download, stream=True)
|
58 |
+
response.raise_for_status()
|
59 |
+
with open(file_path, 'wb') as f:
|
60 |
+
for chunk in response.iter_content(chunk_size=8192):
|
61 |
+
f.write(chunk)
|
62 |
+
|
63 |
+
|
64 |
+
def create_texture_preview(texture_folder, output_folder, size=(246, 246)):
|
65 |
+
os.makedirs(output_folder, exist_ok=True)
|
66 |
+
for texture in os.listdir(texture_folder):
|
67 |
+
img_path = os.path.join(texture_folder, texture)
|
68 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
69 |
+
start_x = np.random.randint(0, img.shape[1] - size[1])
|
70 |
+
start_y = np.random.randint(0, img.shape[0] - size[0])
|
71 |
+
img = img[start_y:start_y + size[0], start_x:start_x + size[1]]
|
72 |
+
cv2.imwrite(os.path.join(output_folder, texture), img)
|
73 |
+
|
74 |
+
|
75 |
+
def prepare_textures(texture_folder, output_folder):
|
76 |
+
with ThreadPoolExecutor(max_workers=len(textures_for_download)) as executor:
|
77 |
+
futures = [executor.submit(dl_textures, texture_for_download) for texture_for_download in
|
78 |
+
textures_for_download]
|
79 |
+
for future in as_completed(futures):
|
80 |
+
future.result()
|
81 |
+
|
82 |
+
create_texture_preview(texture_folder, output_folder, size=(246, 246))
|
83 |
+
|
84 |
+
|
85 |
+
prepare_textures(textures_folder, os.path.join(root, 'preview'))
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
preview_css = ""
|
90 |
+
for i, texture in enumerate(os.listdir(textures_folder), start=1):
|
91 |
+
if os.path.splitext(texture)[1].lower() in valid_extensions:
|
92 |
+
preview_css += f"""[data-testid="{i:02d}-radio-label"]::before {{
|
93 |
+
background-color: transparent !important;
|
94 |
+
background-image: url("./preview/{texture}") !important;
|
95 |
+
}}\n"""
|
96 |
+
|
97 |
+
radio_css = """
|
98 |
+
html,
|
99 |
+
body {
|
100 |
+
background: var(--body-background-fill);
|
101 |
+
}
|
102 |
+
|
103 |
+
.gradio-container {
|
104 |
+
max-width: 1396px !important;
|
105 |
+
}
|
106 |
+
|
107 |
+
#textures label {
|
108 |
+
position: relative;
|
109 |
+
width: 256px;
|
110 |
+
height: 256px;
|
111 |
+
display: flex;
|
112 |
+
flex-direction: row;
|
113 |
+
align-items: flex-end;
|
114 |
+
background: none !important;
|
115 |
+
padding: 4px !important;
|
116 |
+
transition: .3s;
|
117 |
+
}
|
118 |
+
|
119 |
+
#textures label::before {
|
120 |
+
width: 246px;
|
121 |
+
height: 246px;
|
122 |
+
border-radius: 8px;
|
123 |
+
display: block;
|
124 |
+
content: "";
|
125 |
+
transition: .3s;
|
126 |
+
background: red;
|
127 |
+
position: relative;
|
128 |
+
top: 0px;
|
129 |
+
}
|
130 |
+
|
131 |
+
#textures label:hover::before,
|
132 |
+
#textures label:active::before,
|
133 |
+
#textures label.selected::before {
|
134 |
+
mix-blend-mode: soft-light;
|
135 |
+
transition: .3s
|
136 |
+
}
|
137 |
+
|
138 |
+
#textures span:not([data-testid="block-info"]),
|
139 |
+
#textures input {
|
140 |
+
position: absolute;
|
141 |
+
z-index: 999;
|
142 |
+
}
|
143 |
+
|
144 |
+
#textures input {
|
145 |
+
position: absolute;
|
146 |
+
z-index: 999;
|
147 |
+
bottom: 9px;
|
148 |
+
left: 9px;
|
149 |
+
}
|
150 |
+
|
151 |
+
#textures span:not([data-testid="block-info"]) {
|
152 |
+
left: 21px;
|
153 |
+
padding: 2px 8px;
|
154 |
+
background: rgba(0, 0, 0, .57);
|
155 |
+
backdrop-filter: blur(3px)
|
156 |
+
}
|
157 |
+
|
158 |
+
#textures {
|
159 |
+
background-color: hsla(0, 0%, 50%, 1);
|
160 |
+
}
|
161 |
+
|
162 |
+
.built-with,
|
163 |
+
.show-api,
|
164 |
+
footer .svelte-mpyp5e {
|
165 |
+
display: none !important;
|
166 |
+
}
|
167 |
+
|
168 |
+
footer:after {
|
169 |
+
content: "ну пролапс, ну и что?";
|
170 |
+
}
|
171 |
+
|
172 |
+
#zoom {
|
173 |
+
position: absolute;
|
174 |
+
top: 50%;
|
175 |
+
left: 50%;
|
176 |
+
width: 250px;
|
177 |
+
height: 250px;
|
178 |
+
background-repeat: no-repeat;
|
179 |
+
box-shadow: 0px 0px 10px 5px rgba(0, 0, 0, .2);
|
180 |
+
border-radius: 50%;
|
181 |
+
cursor: none;
|
182 |
+
pointer-events: none;
|
183 |
+
z-index: 999;
|
184 |
+
opacity: 0;
|
185 |
+
transform: scale(0);
|
186 |
+
transition: opacity 500ms, transform 500ms;
|
187 |
+
}
|
188 |
+
|
189 |
+
#textures_tab .image-button {
|
190 |
+
cursor: none;
|
191 |
+
}
|
192 |
+
|
193 |
+
#textured_result-download-link,
|
194 |
+
#restored_image-download-link {
|
195 |
+
position: absolute;
|
196 |
+
z-index: 9999;
|
197 |
+
padding: 2px 4px;
|
198 |
+
margin: 0 7px;
|
199 |
+
background: black;
|
200 |
+
bottom: 0;
|
201 |
+
right: 0;
|
202 |
+
font-size: 20px;
|
203 |
+
transition: 300ms
|
204 |
+
}
|
205 |
+
|
206 |
+
#download-link:hover {
|
207 |
+
color: #99f7a8
|
208 |
+
}
|
209 |
+
|
210 |
+
#restored_images.disabled {
|
211 |
+
height: 0px !important;
|
212 |
+
opacity: 0;
|
213 |
+
transition: 300ms
|
214 |
+
}
|
215 |
+
|
216 |
+
#restored_images.enabled {
|
217 |
+
transition: 300ms
|
218 |
+
}
|
219 |
+
""" + preview_css
|
220 |
+
|
221 |
+
custom_js = """
|
222 |
+
const PageLoadObserver = new MutationObserver((mutationsList, observer) => {
|
223 |
+
for (let mutation of mutationsList) {
|
224 |
+
if (mutation.type === 'childList') {
|
225 |
+
const tabsDiv = document.querySelector('div.tab-nav');
|
226 |
+
if (tabsDiv) {
|
227 |
+
observer.disconnect();
|
228 |
+
document.querySelector('#textures_tab-button').addEventListener('click', () => {
|
229 |
+
setTimeout(() => {
|
230 |
+
let labels = document.querySelectorAll('label[data-testid]');
|
231 |
+
labels.forEach((label) => {
|
232 |
+
let input = label.querySelector('input[type="radio"]');
|
233 |
+
if (input) {
|
234 |
+
let title = input.value.split('.')[0].replace(/_/g, ' ');
|
235 |
+
label.title = title;
|
236 |
+
}
|
237 |
+
});
|
238 |
+
document.querySelector("label[data-testid='05-radio-label']").click()
|
239 |
+
}, 150);
|
240 |
+
})
|
241 |
+
let RestoredGallery = document.getElementById('restored_images');
|
242 |
+
function checkImagesAndSetClass() {
|
243 |
+
const firstDiv = RestoredGallery.querySelector('div:first-child');
|
244 |
+
const hasChildElements = firstDiv && firstDiv.children.length > 0;
|
245 |
+
const hasImages = RestoredGallery.querySelectorAll('img').length > 0;
|
246 |
+
if (hasChildElements || hasImages) {
|
247 |
+
RestoredGallery.classList.add('enabled');
|
248 |
+
RestoredGallery.classList.remove('disabled');
|
249 |
+
} else {
|
250 |
+
RestoredGallery.classList.add('disabled');
|
251 |
+
RestoredGallery.classList.remove('enabled');
|
252 |
+
}
|
253 |
+
}
|
254 |
+
const FaceResoreResultCheck = new MutationObserver((mutations) => {
|
255 |
+
checkImagesAndSetClass();
|
256 |
+
});
|
257 |
+
FaceResoreResultCheck.observe(RestoredGallery, {childList: true, subtree: true});
|
258 |
+
checkImagesAndSetClass();
|
259 |
+
function magnify(imgID, zoom) {
|
260 |
+
var img, glass, w, h, bw;
|
261 |
+
img = document.querySelector(imgID);
|
262 |
+
glass = document.createElement("DIV");
|
263 |
+
glass.setAttribute("id", "zoom");
|
264 |
+
img.parentElement.insertBefore(glass, img);
|
265 |
+
glass.style.backgroundImage = "url('" + img.src + "')";
|
266 |
+
glass.style.backgroundRepeat = "no-repeat";
|
267 |
+
glass.style.backgroundSize = (img.width * zoom) + "px " + (img.height * zoom) + "px";
|
268 |
+
bw = 3;
|
269 |
+
w = glass.offsetWidth / 2;
|
270 |
+
h = glass.offsetHeight / 2;
|
271 |
+
glass.addEventListener("mousemove", moveMagnifier);
|
272 |
+
img.addEventListener("mousemove", moveMagnifier);
|
273 |
+
glass.addEventListener("touchmove", moveMagnifier);
|
274 |
+
img.addEventListener("touchmove", moveMagnifier);
|
275 |
+
function moveMagnifier(e) {
|
276 |
+
var pos, x, y;
|
277 |
+
e.preventDefault();
|
278 |
+
pos = getCursorPos(e);
|
279 |
+
x = pos.x;
|
280 |
+
y = pos.y;
|
281 |
+
if (x > img.width - (w / zoom)) { x = img.width - (w / zoom); }
|
282 |
+
if (x < w / zoom) { x = w / zoom; }
|
283 |
+
if (y > img.height - (h / zoom)) { y = img.height - (h / zoom); }
|
284 |
+
if (y < h / zoom) { y = h / zoom; }
|
285 |
+
glass.style.left = (x - w) + "px";
|
286 |
+
glass.style.top = (y - h) + "px";
|
287 |
+
glass.style.backgroundPosition = "-" + ((x * zoom) - w + bw) + "px -" + ((y * zoom) - h) + "px";
|
288 |
+
glass.style.backgroundImage = "url('" + img.src + "')";
|
289 |
+
}
|
290 |
+
function getCursorPos(e) {
|
291 |
+
var a, x = 0, y = 0;
|
292 |
+
e = e || window.event;
|
293 |
+
a = img.getBoundingClientRect();
|
294 |
+
x = e.pageX - a.left;
|
295 |
+
y = e.pageY - a.top;
|
296 |
+
x = x - window.scrollX;
|
297 |
+
y = y - window.scrollY;
|
298 |
+
return { x: x, y: y };
|
299 |
+
}
|
300 |
+
|
301 |
+
img.addEventListener("mouseover", function () {
|
302 |
+
|
303 |
+
glass.style.opacity = "1";
|
304 |
+
glass.style.transform = "scale(1)";
|
305 |
+
});
|
306 |
+
img.addEventListener("mouseout", function () {
|
307 |
+
glass.style.opacity = "0";
|
308 |
+
glass.style.transform = "scale(0)";
|
309 |
+
});
|
310 |
+
}
|
311 |
+
function setupDownloadLink(imgSelector, linkSelector, linkId, magnifyImage) {
|
312 |
+
const imgElement = document.querySelector(imgSelector);
|
313 |
+
if (imgElement && imgElement.src) {
|
314 |
+
let downloadLink = document.querySelector(linkSelector);
|
315 |
+
if (!downloadLink) {
|
316 |
+
if (magnifyImage) {
|
317 |
+
magnify(magnifyImage, 3);
|
318 |
+
}
|
319 |
+
downloadLink = document.createElement('a');
|
320 |
+
downloadLink.id = linkId;
|
321 |
+
downloadLink.innerText = 'скачать';
|
322 |
+
imgElement.after(downloadLink);
|
323 |
+
}
|
324 |
+
downloadLink.href = imgElement.src;
|
325 |
+
downloadLink.download = '';
|
326 |
+
}
|
327 |
+
}
|
328 |
+
|
329 |
+
const DownloadLinkObserverCallback = (mutationsList, observer, imgSelector, linkSelector, linkId, magnifyImage) => {
|
330 |
+
setupDownloadLink(imgSelector, linkSelector, linkId, magnifyImage);
|
331 |
+
};
|
332 |
+
|
333 |
+
const DownloadLinkObserverOptions = { childList: true, subtree: true, attributes: true, attributeFilter: ['src'] };
|
334 |
+
|
335 |
+
const ImageTexturedObserver = new MutationObserver((mutationsList, observer) => {
|
336 |
+
DownloadLinkObserverCallback(mutationsList, observer, '#textured_result img[data-testid="detailed-image"]', '#textured_result-download-link', 'textured_result-download-link', "#textured_result .image-button img");
|
337 |
+
});
|
338 |
+
|
339 |
+
ImageTexturedObserver.observe(document, DownloadLinkObserverOptions);
|
340 |
+
|
341 |
+
const ImageRestoredObserver = new MutationObserver((mutationsList, observer) => {
|
342 |
+
DownloadLinkObserverCallback(mutationsList, observer, '#restored_images img[data-testid="detailed-image"]', '#restored_image-download-link', 'restored_image-download-link');
|
343 |
+
});
|
344 |
+
|
345 |
+
ImageRestoredObserver.observe(document, DownloadLinkObserverOptions);
|
346 |
+
|
347 |
+
}
|
348 |
+
}
|
349 |
+
}
|
350 |
+
});
|
351 |
+
|
352 |
+
PageLoadObserver.observe(document, { childList: true, subtree: true });
|
353 |
+
"""
|
354 |
+
|
355 |
+
def extract_path_from_result(predict_answer):
|
356 |
+
if isinstance(predict_answer, (tuple, list)):
|
357 |
+
result = predict_answer[0]
|
358 |
+
shutil.rmtree(os.path.dirname(predict_answer[1]), ignore_errors=True)
|
359 |
+
else:
|
360 |
+
result = predict_answer
|
361 |
+
return result
|
362 |
+
|
363 |
+
|
364 |
+
def restore_face_common(img_path: str, predict_answer: str, model: str) -> None:
|
365 |
+
result = extract_path_from_result(predict_answer)
|
366 |
+
if os.path.exists(result):
|
367 |
+
if os.path.exists(img_path):
|
368 |
+
os.unlink(img_path)
|
369 |
+
new_file, new_extension = os.path.splitext(result)
|
370 |
+
old_file, old_extension = os.path.splitext(img_path)
|
371 |
+
old_filename = os.path.basename(old_file)
|
372 |
+
new_location = os.path.join(os.path.dirname(img_path), f"{old_filename}_{model}{new_extension}")
|
373 |
+
shutil.move(result, new_location)
|
374 |
+
shutil.rmtree(os.path.dirname(result), ignore_errors=True)
|
375 |
+
|
376 |
+
|
377 |
+
def restore_face_gfpgan(img_path: str) -> None:
|
378 |
+
client = Client(src="https://xintao-gfpgan.hf.space/", verbose=False)
|
379 |
+
result = client.predict(img_path, "v1.4", 4, api_name="/predict")
|
380 |
+
restore_face_common(img_path, result, "gfpgan")
|
381 |
+
|
382 |
+
|
383 |
+
def restore_face_codeformer(img_path: str) -> None:
|
384 |
+
client = Client(src="https://sczhou-codeformer.hf.space/", verbose=False)
|
385 |
+
result = client.predict(img_path, True, True, True, 2, 0, api_name="/predict")
|
386 |
+
restore_face_common(img_path, result, "codeformer")
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
async def restore_faces_one_image(img_path: str, func_list: list) -> bool:
|
391 |
+
def run_func(func) -> bool:
|
392 |
+
for _ in range(3):
|
393 |
+
try:
|
394 |
+
func(img_path)
|
395 |
+
return True
|
396 |
+
except Exception as e:
|
397 |
+
print(f"ошибка в {func.__name__}: {e}")
|
398 |
+
return False
|
399 |
+
|
400 |
+
loop = asyncio.get_event_loop()
|
401 |
+
with ThreadPoolExecutor(max_workers=len(func_list)) as executor:
|
402 |
+
futures = [loop.run_in_executor(executor, run_func, func) for func in func_list]
|
403 |
+
results = await asyncio.gather(*futures)
|
404 |
+
return any(results)
|
405 |
+
|
406 |
+
|
407 |
+
async def restore_faces_batch(input_images: list[str], func_list: list, batch_size: int = 3) -> bool:
|
408 |
+
results = False
|
409 |
+
try:
|
410 |
+
batches = [input_images[i:i + batch_size] for i in range(0, len(input_images), batch_size)]
|
411 |
+
for batch in batches:
|
412 |
+
tasks = [restore_faces_one_image(img_path, func_list) for img_path in batch]
|
413 |
+
results = await asyncio.gather(*tasks)
|
414 |
+
return any(results)
|
415 |
+
except Exception as error:
|
416 |
+
print(error)
|
417 |
+
return results
|
418 |
+
|
419 |
+
|
420 |
+
def get_file_paths(input_path: str | list[str], extensions_list: list[str]) -> list[str]:
|
421 |
+
files = []
|
422 |
+
|
423 |
+
def add_files_from_directory(directory):
|
424 |
+
for file_name in os.listdir(directory):
|
425 |
+
if os.path.splitext(file_name)[1] in extensions_list:
|
426 |
+
files.append(os.path.abspath(os.path.join(directory, file_name)))
|
427 |
+
|
428 |
+
if isinstance(input_path, list):
|
429 |
+
for file_path in input_path:
|
430 |
+
parent_directory = os.path.dirname(file_path)
|
431 |
+
add_files_from_directory(parent_directory)
|
432 |
+
else:
|
433 |
+
add_files_from_directory(input_path)
|
434 |
+
|
435 |
+
return files
|
436 |
+
|
437 |
+
|
438 |
+
async def restore_upscale(files, restore_method):
|
439 |
+
file_paths = [file.name for file in files]
|
440 |
+
if restore_method == 'codeformer':
|
441 |
+
func_list = [restore_face_codeformer]
|
442 |
+
elif restore_method == 'gfpgan':
|
443 |
+
func_list = [restore_face_gfpgan]
|
444 |
+
else:
|
445 |
+
func_list = [restore_face_codeformer, restore_face_gfpgan]
|
446 |
+
results = await restore_faces_batch(file_paths, func_list, batch_size=3)
|
447 |
+
if results:
|
448 |
+
file_paths = get_file_paths(file_paths, valid_extensions)
|
449 |
+
print(f"restore_upscale: get_file_paths: {file_paths}")
|
450 |
+
return file_paths
|
451 |
+
else:
|
452 |
+
return [os.path.join(root, 'error.png')]
|
453 |
+
|
454 |
+
|
455 |
+
def image_noise_softlight_layer_mix(img, texture, output: str = None, opacity: float = 0.7):
|
456 |
+
if isinstance(img, Image.Image):
|
457 |
+
img = np.array(img).astype(float)
|
458 |
+
elif isinstance(img, np.ndarray):
|
459 |
+
img = img.astype(float)
|
460 |
+
|
461 |
+
if img.shape[2] == 3 and not isinstance(img, Image.Image):
|
462 |
+
img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_RGB2BGR).astype(float)
|
463 |
+
|
464 |
+
overlay = cv2.imread(texture, cv2.IMREAD_UNCHANGED).astype(float)
|
465 |
+
start_x = np.random.randint(0, overlay.shape[1] - img.shape[1])
|
466 |
+
start_y = np.random.randint(0, overlay.shape[0] - img.shape[0])
|
467 |
+
overlay = overlay[start_y:start_y + img.shape[0], start_x:start_x + img.shape[1]]
|
468 |
+
if img.shape[2] == 3:
|
469 |
+
img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_RGB2RGBA).astype(float)
|
470 |
+
if overlay.shape[2] == 3:
|
471 |
+
overlay = cv2.cvtColor(overlay.astype(np.uint8), cv2.COLOR_RGB2RGBA).astype(float)
|
472 |
+
overlay[..., 3] *= opacity
|
473 |
+
img_in_norm = img / 255.0
|
474 |
+
img_layer_norm = overlay / 255.0
|
475 |
+
comp_alpha = np.minimum(img_in_norm[:, :, 3], img_layer_norm[:, :, 3]) * 1.0
|
476 |
+
new_alpha = img_in_norm[:, :, 3] + (1.0 - img_in_norm[:, :, 3]) * comp_alpha
|
477 |
+
np.seterr(divide='ignore', invalid='ignore')
|
478 |
+
ratio = comp_alpha / new_alpha
|
479 |
+
ratio[ratio == np.NAN] = 0.0
|
480 |
+
comp = (1.0 - img_in_norm[:, :, :3]) * img_in_norm[:, :, :3] * img_layer_norm[:, :, :3] + img_in_norm[:, :, :3] * (
|
481 |
+
1.0 - (1.0 - img_in_norm[:, :, :3]) * (1.0 - img_layer_norm[:, :, :3]))
|
482 |
+
ratio_rs = np.reshape(np.repeat(ratio, 3), [comp.shape[0], comp.shape[1], comp.shape[2]])
|
483 |
+
img_out = comp * ratio_rs + img_in_norm[:, :, :3] * (1.0 - ratio_rs)
|
484 |
+
img_out = np.nan_to_num(np.dstack((img_out, img_in_norm[:, :, 3])))
|
485 |
+
result = img_out * 255.0
|
486 |
+
rgb_image = cv2.cvtColor(result.astype(np.uint8), cv2.COLOR_BGR2RGB)
|
487 |
+
image = Image.fromarray(rgb_image)
|
488 |
+
return np.array(image)
|
489 |
+
|
490 |
+
|
491 |
+
def apply_texture(input_image, textures_choice, opacity_slider):
|
492 |
+
result = image_noise_softlight_layer_mix(input_image, os.path.join(textures_folder, textures_choice), opacity=opacity_slider)
|
493 |
+
return [result]
|
494 |
+
|
495 |
+
|
496 |
+
with gr.Blocks(analytics_enabled=False, css=radio_css) as demo:
|
497 |
+
with gr.Tab(label="восстановление лиц", id=1, elem_id="restore_tab"):
|
498 |
+
restore_method = gr.Radio(["codeformer", "gfpgan", "оба"], value="codeformer", label="", interactive=True)
|
499 |
+
restore_method.change(fn=lambda x: print(f"restore_method value = {x}"), inputs=restore_method, api_name="show_selected_method")
|
500 |
+
file_output = gr.Gallery(label="", container=True, object_fit="cover", columns=4, rows=4, allow_preview=True, preview=True, show_share_button=False, show_download_button=False, elem_id="restored_images")
|
501 |
+
upload_button = gr.UploadButton("выбор изображений для обработки", file_types=["image"], file_count="multiple", variant="primary")
|
502 |
+
upload_button.upload(fn=restore_upscale, inputs=[upload_button, restore_method], outputs=file_output, api_name="face_restore")
|
503 |
+
with gr.Tab(label="наложение зернистости пленки и шума", id=2, elem_id="textures_tab"):
|
504 |
+
with gr.Row(variant="compact", elem_id="textures_tab_images"):
|
505 |
+
input_image = gr.Image(label="исходник", sources=["upload", "clipboard"], type="numpy")
|
506 |
+
result_image = gr.Gallery(label="результат", elem_id="textured_result", allow_preview=True, preview=True, show_share_button=False, show_download_button=False)
|
507 |
+
opacity_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="видимость")
|
508 |
+
apply_button = gr.Button(value="применить", variant="primary")
|
509 |
+
texture_files = [(f"{i:02d}", texture) for i, texture in enumerate(os.listdir(textures_folder), start=1) if os.path.splitext(texture)[1].lower() in valid_extensions]
|
510 |
+
textures_choice = gr.Radio(texture_files, show_label=False, interactive=True, elem_id="textures")
|
511 |
+
apply_button.click(fn=apply_texture, inputs=[input_image, textures_choice, opacity_slider], outputs=result_image, api_name="texturize")
|
512 |
+
|
513 |
+
|
514 |
+
app = FastAPI()
|
515 |
+
|
516 |
+
|
517 |
+
@app.middleware("http")
|
518 |
+
async def some_fastapi_middleware(request: Request, call_next):
|
519 |
+
response = await call_next(request)
|
520 |
+
path = request.url.path
|
521 |
+
if path == "/":
|
522 |
+
response_body = ""
|
523 |
+
async for chunk in response.body_iterator:
|
524 |
+
response_body += chunk.decode()
|
525 |
+
javascript = f"""
|
526 |
+
<script type="text/javascript">
|
527 |
+
{custom_js}
|
528 |
+
</script>
|
529 |
+
"""
|
530 |
+
response_body = response_body.replace("</body>", javascript + "</body>")
|
531 |
+
del response.headers["content-length"]
|
532 |
+
return Response(
|
533 |
+
content=response_body,
|
534 |
+
status_code=response.status_code,
|
535 |
+
headers=dict(response.headers),
|
536 |
+
media_type=response.media_type
|
537 |
+
)
|
538 |
+
return response
|
539 |
+
|
540 |
+
app.mount("/preview", StaticFiles(directory=os.path.join(root, 'preview')), name="preview")
|
541 |
+
gr.mount_gradio_app(app, demo, path="/")
|
542 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|