Spaces:
Runtime error
Runtime error
File size: 5,876 Bytes
7a66a84 cb40d47 7a66a84 93282dc 7a66a84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.layers import Conv2D, BatchNormalization, LeakyReLU, Flatten, Dense, Reshape, Dropout, Add
IMG_SIZE = 512
def residual_block(X,filters):
# Retrieve Filters
F1, F2 = filters
# Saving the input value.we need this later to add to the output.
X_shortcut = X
# First component of main path
X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (1,1), padding = 'same')(X)
X = BatchNormalization()(X)
X = LeakyReLU(alpha=0.1)(X)
# Second component of main path
X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same')(X)
X = BatchNormalization()(X)
# Final step: Add shortcut value to main path, and pass it through a RELU activation
X = Add()([X, X_shortcut])
X = LeakyReLU(alpha=0.1)(X)
return X
def build_model():
# Inputs to the model
base_model = ResNet50(
weights='imagenet',
input_shape=(512, 512, 3), # Input shape of the images (height, width, channels)
include_top=False # Exclude the top classification layers
)
# Freeze the base model's layers to prevent them from being trained
base_model.trainable = False
x = base_model.output
# First conv block
x = Conv2D(32,(3, 3),kernel_initializer="he_normal",padding="same")(x)
x = LeakyReLU(alpha=0.1)(x)
# Add a residual block
x = residual_block(x, [64, 32])
x = residual_block(x, [64, 32])
x = Flatten()(x)
x = Dense(128, kernel_initializer='he_normal')(x)
x = Dropout(0.2)(x)
x = Dense(64, kernel_initializer='he_normal')(x)
x = Dropout(0.2)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(inputs=base_model.input, outputs=x)
return model
stage1_cc = build_model()
stage1_cc.load_weights("weights/stage1_cc_weights.weights.h5")
stage1_mlo = build_model()
stage1_mlo.load_weights("weights/stage1_mlo_weight.weights.h5")
stage2_cc = build_model()
stage2_cc.load_weights("weights/stage2_cc_weights.weights.h5")
stage2_mlo = build_model()
stage2_mlo.load_weights("weights/stage2_mlo_weight.weights.h5")
def get_diff(prior_image, current_image):
print(prior_image.shape)
print(current_image.shape)
prior_image = np.array(prior_image, dtype=np.float32)
current_image = np.array(current_image, dtype=np.float32)
prior_image = prior_image.astype(np.float32)
current_image = current_image.astype(np.float32)
avg_width = int((prior_image.shape[0] + current_image.shape[0])/2)
avg_height = int((prior_image.shape[1] + current_image.shape[1])/2)
# print(avg_width, avg_width)
prior_image = np.resize(prior_image, [avg_width, avg_height, 3])
current_image = np.resize(current_image, [avg_width, avg_height, 3])
subtract_image =current_image - prior_image
subtract_image[subtract_image<0] = 0
return subtract_image
def stage1_run(cc_diff_img, mlo_diff_img):
cc_diff_img = np.resize(cc_diff_img, [IMG_SIZE, IMG_SIZE, 3])
cc_diff_img = np.expand_dims(cc_diff_img, axis=0)
cc_diff_img = tf.constant(cc_diff_img, dtype=tf.float32)
# print(cc_diff_img.shape)
cc_res = stage1_cc.predict(cc_diff_img)
# print(cc_res)
# mlo_res = stage1_mlo.predict(mlo_diff_img)
mlo_diff_img = np.resize(mlo_diff_img, [IMG_SIZE, IMG_SIZE, 3])
mlo_diff_img = np.expand_dims(mlo_diff_img, axis=0)
mlo_diff_img = tf.constant(mlo_diff_img, dtype=tf.float32)
mlo_res = stage1_mlo.predict(mlo_diff_img)
# print(mlo_res)
return (cc_res + mlo_res)/2
def stage2_run(cc_diff_img, mlo_diff_img):
cc_diff_img = np.resize(cc_diff_img, [IMG_SIZE, IMG_SIZE, 3])
cc_diff_img = np.expand_dims(cc_diff_img, axis=0)
cc_diff_img = tf.constant(cc_diff_img, dtype=tf.float32)
# print(cc_diff_img.shape)
cc_res = stage2_cc.predict(cc_diff_img)
# print(cc_res)
# mlo_res = stage1_mlo.predict(mlo_diff_img)
mlo_diff_img = np.resize(mlo_diff_img, [IMG_SIZE, IMG_SIZE, 3])
mlo_diff_img = np.expand_dims(mlo_diff_img, axis=0)
mlo_diff_img = tf.constant(mlo_diff_img, dtype=tf.float32)
mlo_res = stage2_mlo.predict(mlo_diff_img)
# print(mlo_res)
return (cc_res + mlo_res)/2
def give_result(cc_prior_image, mlo_prior_image, cc_recent_image, mlo_recent_image):
cc_prior_img = np.array(cc_prior_image)
mlo_prior_img = np.array(mlo_prior_image)
cc_recent_img = np.array(cc_recent_image)
mlo_recent_img = np.array(mlo_recent_image)
cc_diff_img = get_diff(cc_prior_img, cc_recent_img)
mlo_diff_img = get_diff(mlo_prior_img, mlo_recent_img)
stage1_res = stage1_run(cc_diff_img, mlo_diff_img)
if(stage1_res<0.4):
res = stage1_res.numpy()
return f"Normal, you have {1-res} chance of being suspecious."
stage2_res = stage2_run(cc_diff_img, mlo_diff_img)
if(stage2_res<0.4):
return "Benign"
else:
return "Suspecious, You need to go for biopsy immediately."
with gr.Blocks(title="Breast Cancer detection", css=".gradio-container {background:lightyellow;}") as demo:
gr.HTML("<h1>Breast Cancer Detection</h1>")
with gr.Row():
cc_prior_image = gr.Image(label="CC Prior image", type="pil")
mlo_prior_image = gr.Image(label="MLO Prior image", type="pil")
with gr.Row():
cc_recent_image = gr.Image(label="CC Recent image", type="pil")
mlo_recent_image = gr.Image(label="MLO Recent image", type="pil")
gr.HTML("<br/>")
output_label = gr.TextArea(placeholder="Result")
send_btn = gr.Button("Detect")
send_btn.click(fn=give_result, inputs=[cc_prior_image, mlo_prior_image, cc_recent_image, mlo_recent_image], outputs=[output_label])
demo.launch(debug=True) |