File size: 5,876 Bytes
7a66a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb40d47
 
7a66a84
 
 
 
 
93282dc
7a66a84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.layers import Conv2D, BatchNormalization, LeakyReLU, Flatten, Dense, Reshape, Dropout, Add

IMG_SIZE = 512

def residual_block(X,filters):
    # Retrieve Filters
    F1, F2 = filters
    # Saving the input value.we need this later to add to the output. 
    X_shortcut = X
    
    # First component of main path
    X = Conv2D(filters = F1, kernel_size = (3, 3), strides = (1,1), padding = 'same')(X)
    X = BatchNormalization()(X)
    X = LeakyReLU(alpha=0.1)(X)

    # Second component of main path 
    X = Conv2D(filters = F2, kernel_size = (3, 3), strides = (1,1), padding = 'same')(X)
    X = BatchNormalization()(X)

    # Final step: Add shortcut value to main path, and pass it through a RELU activation 
    X = Add()([X, X_shortcut])
    X = LeakyReLU(alpha=0.1)(X)
    return X

def build_model():
    # Inputs to the model
    base_model = ResNet50(
        weights='imagenet',
        input_shape=(512, 512, 3),  # Input shape of the images (height, width, channels)
        include_top=False  # Exclude the top classification layers
    )

    # Freeze the base model's layers to prevent them from being trained
    base_model.trainable = False
    x = base_model.output
    
    # First conv block
    x = Conv2D(32,(3, 3),kernel_initializer="he_normal",padding="same")(x)
    x = LeakyReLU(alpha=0.1)(x)
    
    # Add a residual block
    x = residual_block(x, [64, 32]) 
    x = residual_block(x, [64, 32]) 
    x = Flatten()(x)
    
    x = Dense(128, kernel_initializer='he_normal')(x)
    x = Dropout(0.2)(x)
    x = Dense(64, kernel_initializer='he_normal')(x)
    x = Dropout(0.2)(x)
    
    x = Dense(1, activation='sigmoid')(x)
    model = Model(inputs=base_model.input, outputs=x)
    
    return model


stage1_cc = build_model()
stage1_cc.load_weights("weights/stage1_cc_weights.weights.h5")

stage1_mlo = build_model()
stage1_mlo.load_weights("weights/stage1_mlo_weight.weights.h5")

stage2_cc = build_model()
stage2_cc.load_weights("weights/stage2_cc_weights.weights.h5")

stage2_mlo = build_model()
stage2_mlo.load_weights("weights/stage2_mlo_weight.weights.h5")


def get_diff(prior_image, current_image):
    print(prior_image.shape)
    print(current_image.shape)

    prior_image = np.array(prior_image, dtype=np.float32)
    current_image = np.array(current_image, dtype=np.float32)

    prior_image = prior_image.astype(np.float32)
    current_image = current_image.astype(np.float32)

    avg_width = int((prior_image.shape[0] + current_image.shape[0])/2)
    avg_height = int((prior_image.shape[1] + current_image.shape[1])/2)

    # print(avg_width, avg_width)

    prior_image = np.resize(prior_image, [avg_width, avg_height, 3])
    current_image = np.resize(current_image, [avg_width, avg_height, 3])

    subtract_image =current_image - prior_image
    subtract_image[subtract_image<0] = 0
    return subtract_image

def stage1_run(cc_diff_img, mlo_diff_img):
    cc_diff_img = np.resize(cc_diff_img, [IMG_SIZE, IMG_SIZE, 3])
    cc_diff_img = np.expand_dims(cc_diff_img, axis=0)
    cc_diff_img = tf.constant(cc_diff_img, dtype=tf.float32)
    # print(cc_diff_img.shape)
    cc_res = stage1_cc.predict(cc_diff_img)
    # print(cc_res)
    # mlo_res = stage1_mlo.predict(mlo_diff_img)
    mlo_diff_img = np.resize(mlo_diff_img, [IMG_SIZE, IMG_SIZE, 3])
    mlo_diff_img = np.expand_dims(mlo_diff_img, axis=0)
    mlo_diff_img = tf.constant(mlo_diff_img, dtype=tf.float32)

    mlo_res = stage1_mlo.predict(mlo_diff_img)
    # print(mlo_res)
    
    return (cc_res + mlo_res)/2

def stage2_run(cc_diff_img, mlo_diff_img):
    cc_diff_img = np.resize(cc_diff_img, [IMG_SIZE, IMG_SIZE, 3])
    cc_diff_img = np.expand_dims(cc_diff_img, axis=0)
    cc_diff_img = tf.constant(cc_diff_img, dtype=tf.float32)
    # print(cc_diff_img.shape)
    cc_res = stage2_cc.predict(cc_diff_img)
    # print(cc_res)
    # mlo_res = stage1_mlo.predict(mlo_diff_img)
    mlo_diff_img = np.resize(mlo_diff_img, [IMG_SIZE, IMG_SIZE, 3])
    mlo_diff_img = np.expand_dims(mlo_diff_img, axis=0)
    mlo_diff_img = tf.constant(mlo_diff_img, dtype=tf.float32)

    mlo_res = stage2_mlo.predict(mlo_diff_img)
    # print(mlo_res)
    
    return (cc_res + mlo_res)/2

def give_result(cc_prior_image, mlo_prior_image, cc_recent_image, mlo_recent_image):
    cc_prior_img = np.array(cc_prior_image)
    mlo_prior_img = np.array(mlo_prior_image)
    cc_recent_img = np.array(cc_recent_image)
    mlo_recent_img = np.array(mlo_recent_image)

    cc_diff_img = get_diff(cc_prior_img, cc_recent_img)
    mlo_diff_img = get_diff(mlo_prior_img, mlo_recent_img)

    stage1_res = stage1_run(cc_diff_img, mlo_diff_img)

    if(stage1_res<0.4):
        res = stage1_res.numpy()
        return f"Normal, you have {1-res} chance of being suspecious."
    
    stage2_res = stage2_run(cc_diff_img, mlo_diff_img)
    if(stage2_res<0.4):
        return "Benign"
    else:
        return "Suspecious, You need to go for biopsy immediately."

with gr.Blocks(title="Breast Cancer detection", css=".gradio-container {background:lightyellow;}") as demo:
    gr.HTML("<h1>Breast Cancer Detection</h1>")
    with gr.Row():
        cc_prior_image = gr.Image(label="CC Prior image", type="pil")
        mlo_prior_image = gr.Image(label="MLO Prior image", type="pil")

    with gr.Row():
        cc_recent_image = gr.Image(label="CC Recent image", type="pil")
        mlo_recent_image = gr.Image(label="MLO Recent image", type="pil")
    gr.HTML("<br/>")
    output_label = gr.TextArea(placeholder="Result")
    send_btn = gr.Button("Detect")
    send_btn.click(fn=give_result, inputs=[cc_prior_image, mlo_prior_image, cc_recent_image, mlo_recent_image], outputs=[output_label])

demo.launch(debug=True)