Spaces:
Runtime error
Runtime error
model upload
Browse files- app.py +145 -0
- model/yolo_efficient.onnx +3 -0
- requirements.txt +2 -0
- samples/out_1.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import onnxruntime as rt
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
H, W = 224, 224
|
8 |
+
classes=['aeroplane','bicycle','bird','boat','bottle','bus','car','cat','chair','cow','diningtable',
|
9 |
+
'dog','horse','motorbike','person','pottedplant','sheep','sofa','train','tvmonitor']
|
10 |
+
|
11 |
+
providers = ['CPUExecutionProvider']
|
12 |
+
|
13 |
+
m = rt.InferenceSession("./model/yolo_efficient.onnx", providers=providers)
|
14 |
+
|
15 |
+
def nms(final_boxes, scores, IOU_threshold=0):
|
16 |
+
scores = np.array(scores)
|
17 |
+
final_boxes = np.array(final_boxes)
|
18 |
+
|
19 |
+
boxes = final_boxes[...,:-1]
|
20 |
+
|
21 |
+
boxes = [list(map(int, i)) for i in boxes]
|
22 |
+
boxes = np.array(boxes)
|
23 |
+
#print(boxes)
|
24 |
+
|
25 |
+
x1 = boxes[:, 0]
|
26 |
+
y1 = boxes[:, 1]
|
27 |
+
x2 = boxes[:, 2]
|
28 |
+
y2 = boxes[:, 3]
|
29 |
+
|
30 |
+
|
31 |
+
area = (x2 - x1)*(y2 - y1)
|
32 |
+
|
33 |
+
order = np.argsort(scores)
|
34 |
+
#print(order)
|
35 |
+
|
36 |
+
pick = []
|
37 |
+
|
38 |
+
while len(order) > 0:
|
39 |
+
last = len(order)-1
|
40 |
+
i = order[last]
|
41 |
+
pick.append(i)
|
42 |
+
|
43 |
+
suppress = [last]
|
44 |
+
|
45 |
+
if len(order)==0:
|
46 |
+
break
|
47 |
+
|
48 |
+
for pos in range(last):
|
49 |
+
j = order[pos]
|
50 |
+
|
51 |
+
xx1 = max(x1[i], x1[j])
|
52 |
+
yy1 = max(y1[i], y1[j])
|
53 |
+
xx2 = min(x2[i], x2[j])
|
54 |
+
yy2 = min(y2[i], y2[j])
|
55 |
+
|
56 |
+
w = max(0, xx2-xx1+1)
|
57 |
+
h = max(0, yy2-yy1+1)
|
58 |
+
|
59 |
+
overlap = float(w*h)/area[j]
|
60 |
+
|
61 |
+
if overlap > IOU_threshold:
|
62 |
+
suppress.append(pos)
|
63 |
+
|
64 |
+
order = np.delete(order, suppress)
|
65 |
+
|
66 |
+
return final_boxes[pick]
|
67 |
+
|
68 |
+
def detect_obj(input_image):
|
69 |
+
try:
|
70 |
+
image = np.array(input_image)
|
71 |
+
image = cv2.resize(image, (H, W))
|
72 |
+
img = image
|
73 |
+
|
74 |
+
image = image.astype(np.float32)
|
75 |
+
image = np.expand_dims(image, axis=0)
|
76 |
+
print(image.shape)
|
77 |
+
|
78 |
+
output = m.run(['reshape'], {"input": image})
|
79 |
+
output = np.squeeze(output, axis=0)
|
80 |
+
print(output.shape)
|
81 |
+
|
82 |
+
THRESH=.25
|
83 |
+
|
84 |
+
|
85 |
+
object_positions = np.concatenate(
|
86 |
+
[np.stack(np.where(output[..., 0]>=THRESH), axis=-1),
|
87 |
+
np.stack(np.where(output[..., 5]>=THRESH), axis=-1)], axis=0
|
88 |
+
)
|
89 |
+
|
90 |
+
selected_output = []
|
91 |
+
for indices in object_positions:
|
92 |
+
selected_output.append(output[indices[0]][indices[1]][indices[2]])
|
93 |
+
selected_output = np.array(selected_output)
|
94 |
+
|
95 |
+
final_boxes = []
|
96 |
+
final_scores = []
|
97 |
+
|
98 |
+
for i,pos in enumerate(object_positions):
|
99 |
+
for j in range(2):
|
100 |
+
if selected_output[i][j*5]>THRESH:
|
101 |
+
output_box = np.array(output[pos[0]][pos[1]][pos[2]][(j*5)+1:(j*5)+5], dtype=float)
|
102 |
+
|
103 |
+
x_centre = (np.array(pos[1], dtype=float) + output_box[0])*32
|
104 |
+
y_centre = (np.array(pos[2], dtype=float) + output_box[1])*32
|
105 |
+
|
106 |
+
x_width, y_height = abs(W*output_box[2]), abs(H*output_box[3])
|
107 |
+
|
108 |
+
x_min, y_min = int(x_centre - (x_width/2)), int(y_centre-(y_height/2))
|
109 |
+
x_max, y_max = int(x_centre+(x_width/2)), int(y_centre + (y_height/2))
|
110 |
+
|
111 |
+
if(x_min<0):x_min=0
|
112 |
+
if(y_min<0):y_min=0
|
113 |
+
if(x_max<0):x_max=0
|
114 |
+
if(y_max<0):y_max=0
|
115 |
+
|
116 |
+
final_boxes.append(
|
117 |
+
[x_min, y_min, x_max, y_max, str(classes[np.argmax(selected_output[..., 10:], axis=-1)[i]])]
|
118 |
+
)
|
119 |
+
final_scores.append(selected_output[i][j*5])
|
120 |
+
|
121 |
+
final_boxes = np.array(final_boxes)
|
122 |
+
|
123 |
+
nms_output = nms(final_boxes, final_scores, 0.3)
|
124 |
+
|
125 |
+
print(nms_output)
|
126 |
+
for i in nms_output:
|
127 |
+
cv2.rectangle(
|
128 |
+
img,
|
129 |
+
(int(i[0]), int(i[1])),
|
130 |
+
(int(i[2]), int(i[3])), (255, 0, 0)
|
131 |
+
)
|
132 |
+
|
133 |
+
cv2.putText(
|
134 |
+
img,
|
135 |
+
i[-1],
|
136 |
+
(int(i[0]), int(i[1])+15),
|
137 |
+
cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), 1
|
138 |
+
)
|
139 |
+
|
140 |
+
output_pil_img = Image.fromarray(np.uint8(img)).convert('RGB')
|
141 |
+
|
142 |
+
return output_pil_img
|
143 |
+
|
144 |
+
except:
|
145 |
+
return input_image
|
model/yolo_efficient.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94649900941ab5e8e91d9446ca9ee8d5f3c974f13b7357bd8ded5a297ac797b3
|
3 |
+
size 132372993
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
onnxruntime
|
2 |
+
opencv-python-headless
|
samples/out_1.jpg
ADDED
![]() |